Как Запустить Шаговый Двигатель От Жесткого Диска ~ AUTOINTERLINE.RU

Проезжая на велосипеде мимо дачных участков, я увидел работающий ветрогенератор:

Большие лопасти медленно, но верно вращались, флюгер ориентировал устройство по направлению ветра. Мне захотелось реализовать подобную конструкцию, пусть и не способную вырабатывать мощность, достаточную для обеспечения «серьезных» потребителей, но все-таки работающую и, например, заряжающую аккумуляторы или питающую светодиоды.

Шаговые двигатели

Одним из наиболее эффективных вариантов небольшого самодельного ветроэлектрогенератора является использование шагового двигателя

(ШД) (англ.
stepping (stepper, step) motor
) — в таком моторе вращение вала состоит из небольших шагов. Обмотки шагового двигателя объединены в фазы. При подаче тока в одну из фаз происходит перемещение вала на один шаг. Эти двигатели являются низкооборотными и генератор с таким двигателем может быть без редуктора подключен к ветряной турбине, двигателю Стирлинга или другому низкооборотному источнику мощности. При использовании в качестве генератора обычного (коллекторного) двигателя постоянного тока для достижения таких же результатов потребовалась бы в 10-15 раз более высокая частота вращения. Особенностью шаговика является достаточно высокий момент трогания (даже без подключенной к генератору электрической нагрузки), достигающий 40 грамм силы на сантиметр. Коэффициент полезного действия генератора с ШД достигает 40 %.

Для проверки работоспособности шагового двигателя можно подключить, например, красный светодиод. Вращая вал двигателя, можно наблюдать свечение светодиода. Полярность подключения светодиода не имеет значения, так как двигатель вырабатывает переменный ток.

Кладезем таких достаточно мощных двигателей являются пятидюймовые дисководы гибких дисков, а также старые принтеры и сканеры.

Двигатель 1

Например, я располагаю ШД из старого 5.25″ дисковода, работавшего еще в составе ZX Spectrum

— совместимого компьютера «Байт». Такой дисковод содержит две обмотки, от концов и середины которых сделаны выводы — итого из двигателя выведено шесть проводов: первая обмотка (англ.
coil 1
) — синий (англ.
blue
) и желтый (англ.
yellow
); вторая обмотка (англ.
coil 2
) — красный (англ.
red
) и белый (англ.
white
); коричневые (англ.
brown
) провода — выводы от средних точек каждой обмотки (англ.
center taps
).

разобранный шаговый мотор

Слева виден ротор двигателя, на котором видны «полосатые» магнитные полюсы — северный и южный. Правее видна обмотка статора, состоящая из восьми катушек. Сопротивление половины обмотки составляет ~ 70 Ом.

Я использовал этот двигатель в первоначальной конструкции моего ветрогенератора.

Двигатель 2

Находящийся в моем распоряжении менее мощный шаговый двигатель T1319635

фирмы
Epoch Electronics Corp.
из сканера
HP Scanjet 2400
имеет пять выводов (униполярный мотор):

первая обмотка (англ. coil 1

) — оранжевый (англ.
orange
) и черный (англ.
black
); вторая обмотка (англ.
coil 2
) — коричневый (англ.
brown
) и желтый (англ.
yellow
); красный (англ.
red
) провод — соединенные вместе выводы от средней точки каждой обмотки (англ.
center taps
).

Сопротивление половины обмотки составляет 58 Ом, которое указано на корпусе двигателя.

Двигатель 3

В улучшенном варианте ветрогенератора я использовал шаговый двигатель Robotron SPA 42/100-558

, произведенный в ГДР и рассчитанный на напряжение 12 В:

Ветротурбина

Возможны два варианта расположения оси крыльчатки (турбины) ветрогенератора — горизонтальное и вертикальное.

Преимуществом горизонтального

(наиболее популярного)
расположения
оси, располагающейся по направлению ветра, является более эффективное использование энергии ветра, недостаток — усложнение конструкции.

Я выбрал вертикальное расположение

оси —
VAWT
(
vertical axis wind turbine
), что существенно упрощает конструкцию и
не требует ориентации по ветру
. Такой вариант более пригоден для монтирования на крышу, он намного эффективнее в условиях быстрого и частого изменения направления ветра.

Я использовал тип ветротурбины, называемый ветротурбина Савониуса (англ.Savonius wind turbine

). Она была изобретена в 1922 году
Сигурдом Йоханнесом Савониусом (Sigurd Johannes Savonius
) из Финляндии.
Сигурд Йоханнес Савониус
Работа ветротурбины Савониуса основана на том, что сопротивление (англ. drag

) набегающему потоку воздуха — ветру вогнутой поверхности цилиндра (лопасти) больше, чем выпуклой.

Коэффициенты аэродинамического сопротивления (

англ.
drag coefficients) $C_D$двумерные тела:
вогнутая половина цилиндра (1) — 2,30 выпуклая половина цилиндра (2) — 1,20 плоская квадратная пластина — 1,17
трехмерные тела:
вогнутая полая полусфера (3) — 1,42 выпуклая полая полусфера (4) — 0,38 сфера — 0,5 Указанные значения приведены для чисел Рейнольдса (англ.
Reynolds numbers
) в диапазоне $10^4 — 10^6$. Число Рейнольдса характеризует поведение тела в среде.

Сила сопротивления тела воздушному потоку ${F_D} = {{1 \over 2} {C_D} S \rho {v^2} } $, где $\rho$ — плотность воздуха, $v$ — скорость воздушного потока, $S$ — площадь сечения тела.

Такая ветротурбина вращается в одну и ту же сторону, независимо от направления ветра:

Подобный принцип работы используется в чашечном анемометре (англ. cup anemometer)

— приборе для измерения скорости ветра:

Такой анемометр был изобретен в 1846 году ирландским астрономом Джоном Томасом Ромни Робинсоном (John Thomas Romney Robinson

):

Робинсон полагал, что чашки в его четырехчашечном анемометре перемещаются со скоростью, равной одной трети скорости ветра. В реальности это значение колеблется от двух до немногим более трех.

В настоящее время для измерения скорости ветра используются трехчашечные анемометры, разработанные канадским метеорологом Джоном Паттерсоном (John Patterson

) в 1926 году:

Генераторы на коллекторных двигателях постоянного тока с вертикальной микротурбиной продаются на eBay

по цене около $5:

Такая турбина содержит четыре лопасти, расположенные вдоль двух перпендикулярных осей, с диаметром крыльчатки 100 мм, высотой лопасти 60 мм, длиной хорды 30 мм и высотой сегмента 11 мм. Крыльчатка насажена на вал коллекторного микродвигателя постоянного тока с маркировкой JQ24-125H670

. Номинальное напряжение питания такого двигателя составляет 3 … 12 В. Энергии, вырабатываемой таким генератором, хватает для свечения «белого» светодиода.

Скорость вращения ветротурбины Савониуса не может превышать скорость ветра

, но при этом такая конструкция характеризуется
высоким крутящим моментом
(англ.
torque
).

Эффективность ветротурбины можно оценить, сравнив вырабатываемую ветрогенератором мощность с мощностью, заключенной в ветре, обдувающем турбину: $P = {1\over 2} \rho S {v^3}$ , где $\rho$ — плотность воздуха (около 1,225 кг/м 3 на уровне моря), $S$ — ометаемая площадь турбины (англ. swept area

), $v$ — скорость ветра.

Моя ветротурбина

Вариант 1

Первоначально в крыльчатке моего генератора использованы четыре лопасти в виде сегментов (половинок) цилиндров, вырезанных из пластиковых труб :

Размеры сегментов — длина сегмента — 14 см; высота сегмента — 2 см; длина хорды сегмента — 4 см;

Я установил собранную конструкцию на достаточно высокой (6 м 70 см) деревянной мачте из бруса, прикрепленную саморезами к металлическому каркасу:

Вариант 2

Недостатком генератора была достаточно высокая скорость ветра, требуемая для раскрутки лопастей. Для увеличения площади поверхности я использовал лопасти, вырезанные из пластиковых бутылок :

Размеры сегментов —

длина сегмента — 18 см; высота сегмента — 5 см; длина хорды сегмента — 7 см; расстояние от начала сегмента до центра оси вращения — 3 см.

Вариант 3

Проблемой оказалась прочность держателей лопастей. Сначала я использовал перфорированные алюминиевые планки от советского детского конструктора толщиной 1 мм. Через несколько суток эксплуатации сильные порывы ветра привели к излому планок (1). После этой неудачи я решил вырезать держатели лопастей из фольгированного текстолита (2) толщиной 1,8 мм: Прочность текстолита на изгиб перпендикулярно пластине составляет 204 МПа и сравним с прочностью на изгиб алюминия — 275 МПа. Но модуль упругости алюминия $E$ (70000 МПа) намного больше, чем у текстолита (10000 МПа), т.е. тексолит намного эластичнее алюминия. Это, по моему мнению, с учетом большей толщины текстолитовых держателей, обеспечит гораздо большую надежность крепления лопастей ветрогенератора. Ветрогенератор смонтирован на мачте:

Опытная эксплуатация нового варианта ветрогенератора показала его надежность даже при сильных порывах ветра.

Недостатком турбины Савониуса является невысокая эффективность

— только около 15 % энергии ветра преобразуется в энергию вращения вала (это намного меньше, чем может быть достигнуто с ветротурбиной Дарье (англ.
Darrieus wind turbine
)), использующей подъемную силу (англ.
lift
). Этот вид ветротурбины был изобретен французским авиаконструктором Жоржем Дарье
(Georges Jean Marie Darrieus) —
патент США от 1931 года № 1,835,018
. Жорж Дарье
Недостатком турбины Дарье является то, что у нее очень плохой самозапуск (для выработки крутящего момента от ветра турбины уже должна быть раскручена).

Преобразование электроэнергии, вырабатываемой шаговым двигателем

Выводы шагового двигателя могут быть подключены к двум мостовым выпрямителям, собранным из диодов Шоттки для снижения падения напряжения на диодах. Можно применить популярные диоды Шоттки 1N5817

с максимальным обратным напряжением 20 В,
1N5819
— 40 В и максимальным прямым средним выпрямленным током 1 А. Я соединил выходы выпрямителей последовательно с целью увеличения выходного напряжения. Также можно использовать два выпрямителя со средней точкой. Такой выпрямитель требует в два раза меньше диодов, но при этом и выходное напряжение снижается в два раза. Затем пульсирующее напряжение сглаживается с помощью емкостного фильтра — конденсатора 1000 мкФ на 25 В. Для защиты от повышенного генерируемого напряжения параллельно конденсатору включен стабилитрон на 25 В.

схема моего ветрогенератора

электронный блок моего ветрогенератора

Применение ветрогенератора

Вырабатываемое ветрогенератором напряжение зависит от величины и постоянства скорости ветра.

При ветре, колышущем тонкие ветви деревьев, напряжение достигает 2 … 3 В.

При ветре, колышущем толстые ветви деревьев, напряжение достигает 4 … 5 В (при сильных порывах — до 7 В).

ПОДКЛЮЧЕНИЕ К JOULE THIEF

Сглаженное напряжение с конденсатора ветрогенератора может подаваться на — низковольтный DC-DC

преобразователь

Значение сопротивления резистора R

подбирается экспериментально (в зависимости от типа транзистора) — целесообразно использовать переменный резистор на 4,7 кОм и постепенно уменьшать его сопротивление, добиваясь стабильной работы преобразователя. Я собрал такой преобразователь на базе германиевого
pnp
-транзистора ГТ308В (
VT
) и импульсного трансформатора МИТ-4В (катушка
L1
— выводы 2-3,
L2
— выводы 5-6) :

ЗАРЯД ИОНИСТОРОВ (СУПЕРКОНДЕНСАТОРОВ)

Ионистор (суперконденсатор, англ. supercapacitor

) представляет собой гибрид конденсатора и химического источника тока. Ионистор — неполярный элемент, но один из выводов может быть помечен «стрелкой» — для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе. Для первоначальных исследований я использовал ионистор емкостью 0,22 Ф на напряжение 5,5 В (диаметр 11,5 мм, высота 3,5 мм):

Я подключил его через диод к выходу через германиевый диод Д310.

Для ограничения максимального напряжения зарядки ионистора можно использовать стабилитрон или цепочку светодиодов — я использую цепочку из двух красных светодиодов:

Для предотвращения разряда уже заряженного ионистора через ограничительные светодиоды HL1

и
HL2
я добавил еще один диод —
VD2
.

Продолжение следует

Есть способ получать электроэнергию абсолютно бесплатно. Достаточно сделать и установить на своем участке ветрогенератор. Традиционные источники электричества на сегодняшний день такой заменить не сможет, однако несколько приятных процентов гордой независимости домохозяйству добавит. Самое главное — «состряпать» полноценный генератор можно буквально из любого старого хлама и мусора.

Поделки из нерабочих HDD — мини-помпа

«Мозги» и немного предыстории:

Строго говоря, идея использовать для помп моторчики HDD не нова. C 2009 года ведётся целая ветка на одном известном форуме. Так что изначально был нацелен на изготовление помпы из «ноутбучного» жёсткого диска и поиска подходящего драйвера c интегрированными силовыми ключами и бессенсорным управлением.

Но «из коробки» перенять опыт мне не удалось. Череда тестов с разными драйверами (MTD6501C, DRV11873 и ряда прочих китайских поделок) давали неутешительный итог: более крупные моторы от 3.5 дисков работают идеально. А вот с мелкими моторами в лучшем случае удается запустить единицы, и те работают крайне нестабильно. С таким неутешительным результатом давняя идея была заброшена и находилась на грани забвения.

Но относительно недавно наткнулся на довольно любопытный драйвер от TI — DRV10987. При своих скромных габаритах обладает довольно внушительным потенциалом:

  • Рабочее напряжение от 6v до 28v
  • Интегрированный понижающий преобразователь на 5v (можно запитать МК для управления)
  • Постоянный рабочий ток до 2А (пиковый — 3А)
  • Огромное число программно определяемых параметров (задание значений конфигурационных регистров по шине I2C) для управления работой мотора
  • Автоматический перезапуск мотора после аварийной остановки / сбое (если условия возникновения сбоя прошли)
  • Защита от перегрузки по току
  • Защита от перенапряжения
  • Детектирование остановки/блокировки ротора
  • Отключение при перегреве контроллера

Вооружившись ардуинкой

(да простят меня за это ругательное слово местные электронщики) для задания параметров, изготовленной ЛУТом платой под данный драйвер, углубился в опыты по запуску моторчиков. Что же, данный контроллер меня не разочаровал! Несмотря на примененный метод «научного тыка» при подборе параметров, удалось найти подход к любому мотору от HDD!

Помог мне в этом самописный онлайн-конфигуратор настроек

. Пользуйтесь на здоровье!)

Затем уже были заказаны в поднебесной более презентабельные платки:

После регистрации (ну вот так требуют) можете бесплатно скачать файлы проекта. Или сразу же заказать платы здесь

.

О «пересадке сердца»

Осталось дело за малым — достать из корпуса HDD мотор, который кстати говоря, в 2.5 дисках (и в большинстве 3.5) является его неотъемлемой частью. Вкратце можно процесс описать известной фразой «Пилите, Шура, пилите!

«:

После высверливания получаем кругляшки с моторчиком. После обработки напильником получаем диаметр основания около 25мм.

Подготовка реципиента к трансплантации:

Мозги и сердце будущей помпы отлично ладят друг с другом и готовы обрести новое место обитания. Так что самое время подумать о корпусе и крыльчатке.

Так как нужно получить при малом рабочем объеме высокое давление, крыльчатку спроектировал с 7 лучами:

Печать на 3D принтере поликарбонатом
3D модель

Поликарбонат — вещь для корпуса отличная. Но печатать целый корпус им дорого. Куски толстых листов очень трудно найти да и фрезеровка не бесплатна (для меня). Зато у рекламщиков за спасибо можно выпросить обрезки от листов толщиной 4мм и 2мм. Так что корпус проектировался для последующего нарезания лазером деталей и их склейкой в единое целое без необходимости фрезеровки. Потребуется разве что высверливание отверстий под фитинги и гайки.

Вид 3D модели
3D модель

Набор деталей для склейки «топа» помпы. В местах сопряжения каналов притока и оттока срезаны грани

Ход операции:

Тут хотелось бы сделать лирическое отступление и напомнить желающим повторить и не только, что дихлорэтан, которым проводилась склейка — содержит мало витаминов и вдыхать нужно больше довольно токсичное и летучее вещество. Работы с ним нужно проводить или на открытом воздухе или в хорошо вентилируемом помещении.

Стек деталей «топа» на сушке после склейки — верх-приток-сепаратор-крыльчатка-ротор. Аналогично склеивается основание для мотора (или изготовить из 6мм куска поликарбоната целиком)

После склейки высверливаются отверстия для фитинга — 8мм латунной трубки по насечкам на детали «сепаратор»

Старый добрый состав БФ-4 как по мне дает надежную склейку латуни и поликарбоната

Тем же клеем приклеивается основание мотора в нижней части помпы. В верхней части рассверливаются (не
насквозь!) отверстия под вклейку гаек-заклепок М3. И на фото видна прокладка из тонкого силикона

Тестирование:

Вот и пришла пора проверить в работе самоделку. Для этого был наскоро собран тестовый стенд. Так как Хабр читают дети серьезные разработчики, у которых внешний вид и состав стенда может вызвать приступы паники, ужаса и дезориентации, хотел его спрятать под спойлер… но надеюсь, всё обойдётся, и потом не говорите, что я вас, уважаемые читатели, не предупреждал!

Ардуинка подаёт управляющий сигнал PWM, коэффициент заполнения которого задается вручную переменным резистором, считывает значение конфигурационных регистров, а так же определяет скорость вращения как через внутренние регистры драйвера (RPMrg), так и по сигналу FG (RPMfg). Питание мотора — 12v
Запуск мотора без нагрузки. Регулировка оборотов и замер энергопотребления

Мотор успешно стартует от 6% управляющего PWM сигнала. А в конце видео видно, как на высоких оборотах значения скорости во внутреннем регистре «подвисают» на интервале от 10к до 13к оборотов, хотя через выход FG частота фиксируется без изменений.

С холостым ходом всё понятно — получили 13к оборотов при напряжении 12v и потреблении 0.16A. Но собиралась водяная помпа, а я тут воздух гоняю. Так что следующий этап — сопровождение домочадцев на улицу, дабы не мешались, и оккупация ванной комнаты!

Сделал точильный станочек из жесткого диска

Приветствую тебя, дорогой читатель.

В этой статье расскажу, как я сделал наждак из жесткого диска компьютера без особых усилий. Нашелся у меня старенький жесткий диск и блок питания от компьютера.

Жесткий диск уже давно не работал, поэтому было решено его применить в других целях. Открутил винты и снял крышку.

Из внутренностей жесткого диска нужно оставить сам диск с моторчиком, остальное выкручиваем, там же находится мощный неодимовый магнит, который можно куда-то приспособить.

Снимаем диск, открутив три винта.

После того, как наждачка приклеилась к диску, можно устанавливать его на двигатель и фиксировать винтами.

Теперь необходимо подключить блок питания к двигателю, вставляем разъем Molex и на блоке питания замыкаем зеленый провод с черным, чтобы он запустился без компьютера.

Включаем блок питания кнопкой на корпусе и можно проверять наждак в действии.

Через блок питания жесткий диск крутиться не так быстро, как хотелось бы. Поэтому я нашел у себя контроллер для бесщеточных моторов на 12 вольт, который покупал в Китае и припаял провода от него к двигателю.

При подключении мотора к контроллеру обороты возросли и двигатель теперь не проседает как в случае работы от блока питания с родной платой.

Результатом я доволен, наждак работает как мне и хотелось, а в случае необходимости замены наждачки можно найти еще таких дисков и сделать по аналогии. Теперь мои отвертки будут ровными, а ножи всегда острыми, также на таком наждаке удобно шлифовать различные мелкие детали из любых материалов.

Источник

Запуск старых HDD для прикладных применений

При использовании старых HDD приводов в прикладных целях иногда возникает проблема с тем, что шпиндельный двигатель останавливается через некоторое время после запуска. Есть у них такая «фишка» — если с блока головок не поступают сигналы на микросхему-контроллер, то она запрещает микросхеме-драйверу вращать двигатель. На примере несколько моделей приводов попробуем разобраться, как это исправить.

Всё началось с того, что привезли несколько старых винчестеров (рис.1) и сказали, что здесь рабочие вперемешку с «убитыми», хочешь – выбирай, не хочешь – делай что хочешь. Но если разберёшься, как их использовать в качестве небольшого наждака для правки инструмента, расскажи. Ну, вот – рассказываю…

Первый HDD – «Quantum» семейства «Fireball TM» с микросхемой привода TDA5147AK (рис.2). Посмотрим, что он из себя представляет.

Верхняя крышка крепится 4-мя винтами по углам и одним винтом и гайкой, находящимися сверху, под наклейками. После снятия крышки видны сам жёсткий диск, считывающие головки и магнитная система управления положением головок (рис.3). Шлейф отсоединяем, магнитную систему откручиваем (здесь понадобиться специально заточенный шестигранный ключ «звёздочка»). При желании диск тоже можно снять, если открутить три винта на шпинделе двигателя (также нужен шестигранник).

Теперь ставим крышку на место для того, чтобы можно было перевернуть HDD для экспериментов с электроникой и подаём в разъём питания напряжения +5 В и +12В. Двигатель разгоняется, работает примерно 30 секунд, а затем останавливается (на печатной плате есть зелёный светодиод – он горит при вращении двигателя и мигает при его остановке).

В сети легко находится даташит на микросхему TDA5147K, но по нему не удалось разобраться с сигналом разрешения/запрета вращения. При «подтягивании» сигналов POR к шинам питания добиться нужной реакции не удалось, но при просмотре сигналов осциллографом выяснилось, что при касании щупом 7-го вывода микросхемы TDA5147АK происходит её сброс и перезапуск двигателя. Таким образом, собрав простейший генератор коротких импульсов (рис.4, нижнее фото) с периодом в несколько секунд (или десятков секунд), можно заставить двигатель вращаться более-менее постоянно. Возникающие паузы в подаче питания длятся около 0,5 секунды и это не критично, если двигатель используется с небольшой нагрузкой на валу, но в других случаях это может быть неприемлемо. Поэтому, способ хоть и действенный, но не совсем правильный. А «правильно» запустить его так и не удалось.

Следующий HDD – «Quantum» семейства «Trailblazer» (рис.5).

При подаче напряжений питания привод никаких признаков жизни не подаёт и на плате электроники начинает сильно греться микросхема 14-107540-03. В середине корпуса микросхемы заметна выпуклость (рис.6), что говорит о её явной неработоспособности. Обидно, но не страшно.

Смотрим микросхему управления вращением двигателя (рис.7) — HA13555. Она при подаче питания не греется и видимых повреждений на ней нет. Прозвонка тестером элементов «обвязки» ничего особенного не выявила – остаётся только разобраться со схемой «включения».

Поисковики даташит на неё не находят, но есть описание на HA13561F. Она выполнена в таком же корпусе, совпадает по ножкам питания и по «выходным» выводам с HA13555 (у последней к проводникам питания двигателя подпаяны диоды – защита от противо-ЭДС). Попробуем определиться с необходимыми выводами управления. Из даташита на HA13561F (рис.8) следует, что на вывод 42 (CLOCK) должна подаваться тактовая частота 5 МГц с уровнем TTL-логики и что сигналом, разрешающим запуск двигателя, является высокий уровень на выводе 44 (SPNENAB).

Так как микросхема 14-107540-03 нерабочая, то отрезаем питание +5 В от неё и от всех остальных микросхем, кроме HA13555 (рис.9). Тестером проверяем правильность «порезов» по отсутствию соединений.

На нижнем фото рисунка 9 красными точками показаны места подпайки напряжения +5 В для HA13555 и резистора «подтяжки к плюсу» её 44 вывода. Если же резистор от вывода 45 снять с родного места (это R105 по рисунку и поставить его вертикально с некоторым наклоном к микросхеме, то дополнительный резистор для подтяжки к «плюсу» вывода 44 можно припаять к переходному отверстию и к висящему выводу первого резистора (рис.10) и тогда питание +5 В можно подавать в место их соединения.

На обратной стороне платы следует перерезать дорожки, как показано на рисунке 11. Это «бывшие» сигналы, приходящие от сгоревшей микросхемы 14-107540-03 и старая «подтяжка» резистора R105.

Организовать подачу «новых» тактовых сигналов на вывод 42 (CLOCK) можно с помощью дополнительного внешнего генератора, собранного на любой подходящей микросхеме. В данном случае была использована К555ЛН1 и получившаяся схема показана на рисунке 12.

После «прокидывания» проводом МГТФ напряжения питания +5 В прямо от разъёма к выводу 36 (Vss) и других требуемых соединений (рис.13), привод запускается и работает безостановочно. Естественно, если бы микросхема 14-107540-03 была исправна, вся доработка заключалась бы только в «перетяжке» 44-го вывода к шине +5 В.

На этом «винте» была проверена его работоспособность при других тактовых частотах. Сигнал подавался с внешнего генератора прямоугольных импульсов и минимальная частота, с которой привод работал устойчиво — 2,4 МГц. На более низких частотах циклично происходил разгон и остановка. Максимальная частота – около 7,6 МГц, при дальнейшем её увеличении количество оборотов оставалось прежним.

Общая сборка

Теперь остается только собрать ветряной генератор, прикрепить провода к нашему шесту, установить на него поворотный элемент, а также поднять и поставить «мельницу» в подходящем месте. После завершения работ будет правильно провести небольшие испытания. Максимальные 250 В ветрогенератор конечно не даст, но итог работы все равно будет приятным! Подробный процесс сборки можно увидеть в видеоматериале ниже.

Хочется еще больше интересных и полезных советов для дачного участка на будущий сезон? Как насчет того, чтобы выяснить еще и превратить ее в полезную для хозяйства штуку.

Продолжаем утилизировать пластиковые бутылки. Предлагаю рассмотреть изготовление вертикального роторного ветряка из четырех бутылок. Используемый узел вращения может стать генератором слабых токов или прекрасным датчиком скорости ветра для самодельного анемометра. Показаны фото и видео ветряка. Схема сборки подробно изложена ниже.

Типы мотор-колес

Мотор-колеса бывают редукторными и прямоприводными. Для использования в качестве генератора электрического тока для ветряка подходят только модели прямого привода. Они не только более надежны и дольше служат благодаря максимально простой конструкции, но и обеспечивают возможность рекуперации энергии. К тому же, отсутствие шестеренок на прямоприводном электродвигателе снижает механические потери.

По весу и мощности МК прямого привода делятся на 3 категории:

  1. Модели массой 4,5–6 кг с номинальной мощностью 600–1000 Вт и КПД около 85%.
  2. Устройства массой 8–10 кг с номинальной мощностью 1,5–2 кВт.
  3. «Тяжеловесы» массой до 24 кг и мощностью до 8 кВт.

Для получения хорошего инерционного эффекта используемое в качестве генератора мотор-колесо должно быть тяжелым. Для получения мощного ветряка подойдет МК на 1000 Вт и 48 В. Универсальную модель можно собрать из МК на 800 Вт, а компактный вариант – на основе ступичного электромотора мощностью 500 Вт.

Восстановление

Пришло время приступить к восстановлению.

Важно

: соблюдайте регистр при вводе команд!

  1. Перейдем на уровень 1, введя /1
  2. Очистим S.M.A.R.T. командой N1
  3. Выключаем питанием и ждем, когда остановится двигатель (

Важно Поздравление отца дочери на свадьбе

10 сек)

  • Включаем питание и снова нажимаем Ctrl+Z
  • Очищаем список bad-блоков: вводим i4,1,22
  • Повторяем пункты 3-4
  • Вводим в консоли: m0,2,2,0,0,0,0,22 (для жестких дисков «Made in China» — m0,2,2. 22)
  • Переходим на уровень 2: /2
  • Останавливаем двигатель: вводим Z
  • Выключаем питание

После всех манипуляций жесткий диск стал определяться в BIOS. Чтобы не столкнуться с проблемой снова, обновите ПО у винчестера. Эта процедура совсем проста: с сайта производителя скачивается загрузочный образ, который записывается на болванку. Далее — загрузка и обновление прошивки в пошаговом режиме, просто следуйте инструкциям на экране.

Сейчас я описал ситуацию, когда все работает, как надо, но так получается редко. В процессе восстановления возникло несколько трудностей, с которыми, я уверен, вам тоже предстоит столкнуться. Поэтому, все у кого что-то не получилось, ищите решение в последнем разделе этой статьи.

Применение HDD Regenerator

HDD Regenerator – это очень простое в освоении и использовании приложение, предназначенное для восстановления сбойных секторов жестких дисков и регенерации поверхности. Особой гордостью разработчиков пользуется специальный алгоритм перемагничивания поверхности, на основании которого и работает программа. Приложение примечательно своими простым интерфейсом и способом управления – здесь нет сложных настроек, многоуровневых меню и переключателей, команды для запуска просты и понятны даже начинающему пользователю.

В действительности, список функций и достоинств HDD Regenerator довольно широк. Не будем углубляться в перечисление всех преимуществ приложения, а перейдем к основным способам применения, которые используются широким кругом пользователей.

Выполните S.M.A.R.T. проверку

Если вы обеспокоены тем, что ваш жесткий диск может выйти из строя, вы можете проверить его SMART статус. SMART означает «Self-Monitoring, Analysis and Reporting Technology»
– технология диагностики состояния жесткого диска с возможностью определения прогнозируемого окончания срока службы накопителя. И на вашем жестком диске есть такая технология, которая пытается идентифицировать возможные проблемы и сообщить вам об этом.

Однако, надо учитывать некоторые неприятные моменты. Прежде всего, SMART не всегда работает отлично. Даже если жесткий диск уже не работает, SMART все еще может сообщать об исправности накопителя. Или если жесткий диск вот-вот выйдет из строя, то технология SMART может и не предупредить вас, прежде чем диск выйдет из строя окончательно.

Если вы хотите проверить статус SMART, вы можете сделать это с помощью стороннего инструмента, такого как «CrystalDiskInfo»

. Отметка техсостояния
«Плохо»
– это явный признак того, что ваш диск действительно работает с перебоями. Это предполагает, что вы хотя бы сможете загрузить Windows для начала. Если же доступ к вашему диску отсутствует полностью, то вы не увидите перед собой выводы S.M.A.R.T. Тем не менее, вы можете увидеть статус SMART на экране вашего компьютера в BIOS или UEFI. Если ваш компьютер выдает сообщение об ошибке S.M.A.R.T при загрузке, это явный признак того, что ваш жесткий диск умирает.

С чего начать?

Исходя из величины требуемых нагрузок для одновременного включения приборов, подбирают все основные элементы.

Оптимальные показатели рабочих характеристик достигаются правильным подбором мощностей бензинового и электрического двигателей.

Бензогенератор на основе двухтактного бензинового двигателя выручит при необходимости краткосрочного подключения. Когда требуется работа надолго и с большой нагрузкой, лучше изготовить генератор с четырехтактным бензиновым двигателем.

Панель управления должна иметь вольтметр, кнопку прерывания цепи, клеммы для подключения заземления, розетки для использования выработанной энергии.

Заниматься самостоятельным изготовлением бензогенератора имеет смысл в том случае, когда у вас имеются неиспользуемые двигатели от старых приборов. Можно, конечно, купить все составляющие специально для этих целей, однако большой экономии получить при этом не удастся – стоимость комплектующих может даже превысить цену готовой заводской модели.

На практике часто используют мотоциклетные или автомобильные движки, двигатели от косилок, бензопил и прочих устройств.

Генератор с двигателем от а/м Волга 21

Неисправность контроллера жесткого диска

Итак, если при подачи питания на жесткий диск ничего не происходит, или срабатывает защита блока питания, то можно смело говорить о неисправности контроллера жесткого диска. В бытовых условиях можно лишь проверить питающие напряжения (дальнейший ремонт контроллеров требует наличия специализированного оборудования и запасных частей). Входные цепи питания, как правило, устроены следующим образом: последовательно питанию стоят ограничивающие индуктивности, а после них на «землю» стоят защитные диоды – супрессоры, каждый на свое напряжение 5 или 12 вольт (такие же супрессоры стоят во всей автомобильной электроники, их задача гасить выбросы перенапряжения). Проверить эти элемент можно очень просто – проходные индуктивности должны иметь нулевое (или очень маленькое) сопротивление, а защитные диоды (по направлению питание-земля) бесконечное (или очень большое) сопротивление (для проверки обратного сопротивления защитных диодов их необходимо снять с платы конроллера). Если это не так, то для быстрой проверки (изменение схем питания не есть правильный путь) индуктивности надо закоротить, а защитные диоды разомкнуть (просто удалить). Правильным же решением будет замена неисправных деталей с соблюдением их параметров.

Выход их строя блока магнитных головок

На предыдущих шагах мы исключили залипание магнитных головок, клин двигателя и неисправность контроллера. Идем дальше. После того, как диск раскрутился и стабилизировал обороты, накопитель должен считать свою внутреннюю операционную систему. Для этого диск выводит магнитные головки из парковщика (специальное механическое устройство, которое позволяет снимать головки с поверхностей и заводить их обратно) и ведет их к служебной области. Если в этот момент диск начинает стучать, то это значит что магнитные головки, по которым лежит операционная система накопителя (обычно это 0-я и 1-я головки) неисправны, так как нет информации от головки о ее текущем положении

Вообще, если накопитель стучит (не важно, в какой момент начинается стук), то в абсолютном большинстве случаев это означает выход из стоя блока магнитных головок. К блоку магнитных головок относятся как сами головки, так и специальная микросхема коммутатор, которая стоит в одном блоке с головками

В бытовых условиях определить, что вышло из строя (коммутатор или головки) невозможно, поэтому будем считать, что неисправен БЛОК магнитных головок. Коммутатор выходит из строя если на контроллере сгорела микросхема, отвечающая за вращение двигателя и позиционирование магнитных головок (эта микросхема является генератором питания для коммутатора). Обычно у накопителя выходит из строя одна головка и без замены всего блока (блок магнитных головок можно заменить только целиком, отдельно магнитную головку, даже в условиях сервиса, заменить невозможно) удается восстановить данные с оставшихся головок.

Если вы не хотите платить за восстановление данных

Если у вас есть критически важные данные, которые вам нужно вернуть, вам просто необходимо обратиться в профессиональный сервисный центр по восстановлению данных. Не рискуйте и не пытайтесь сделать это сами.

Но, если вы имеете на руках испорченный диск и хотите вернуть свои данные обратно, и знаете, что вы не собираетесь тратить деньги на профессиональное восстановление данных, то есть некоторые вещи, которые вы можете попробовать сами. Попробуйте заморозить диск – в прямом смысле положите его в морозильную камеру, раньше это помогало при решении некоторых проблем. Но мы абсолютно не уверены, что это правда, а не вымысел. Однако если это действительно работает, то оно будет работать только для механических дисков, а не для твердотельных накопителей. Некоторые люди считают, что после охлаждения, привод может немного стабилизироваться. И этого может быть достаточно для корректной работы, учитывая механические операции, которые там происходят. Но если вы на такое решитесь, то вы будете делать все на свой страх и риск. В любом случае, хорошо изолируйте ваш диск для предотвращения образования конденсата внутри накопителя.

Вы также можете просто выключить компьютер, дать ему остыть и вернуться к нему позже. Если диск не исправен, то иногда он работает, а иногда нет. Но когда он работает, то времени может быть достаточно, чтобы успеть восстановить несколько ваших файлов . Однако, если диск все же испорчен, то чем больше вы его используете, тем больше вероятность его полного обрушения. И возможно, самым лучшим решением будет обратиться в профессиональный сервисный центр восстановления данных. И потратить все же некоторую сумму для спасения данных, которые вам действительно важны.

Избежать поломки жесткого диска невозможно. Лучшее, что вы можете сделать, это создавать регулярные резервные копии. Тогда вы всегда сможете восстановить важные данные на другой носитель, если обрушение вашего основного диска все же произошло.

Источник

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]