Простые схемы
Начнем с самых простых схем, собрать которые сможет даже начинающий радиотехник. Но несмотря на простоту и ограниченный функционал, они вполне годятся для питания во время отладки большинства конструкций самостоятельной сборки.
Трансформаторный регулируемый блок питания с симисторным регулятором
Предлагаемый БП довольно прост в изготовлении и позволяет получить постоянное напряжение величиной от 4 до 25 В. Принцип регулирования – фазоимпульсный. Выходной ток зависит от мощности трансформатора и при указанных на схеме элементах может достигать 10 А.
Рассмотрим работу устройства более подробно. Сетевое напряжение подается на первичную обмотку трансформатора Т1 через симистор VS1. Сразу после включения БП симистор закрыт, ток через обмотку трансформатора не течет. При появлении положительной полуволны конденсатор С2 начинает заряжаться через резистор R3 и диод VD1 моста VD1-VD4. Как только напряжение на нем достигнет 160 В, зажжется неоновая лампа HL1 и конденсатор разрядится через управляющий электрод симистора, одновременно открывая его. При этом на сетевую обмотку Т1 начнет поступать напряжение. По окончании полуволны симистор закрывается.
Одновременно этот же резистор через диод VD3 моста подключается параллельно первичной обмотке трансформатора Т1. Сделано это для того, чтобы симистор после короткого открывающего импульса сразу же не закрылся. Ведь он работает на реактивную нагрузку, ток через которую достигнет значения удержания симистором не сразу.
При появлении отрицательной полуволны процесс повторяется, но конденсатор теперь заряжается напряжением обратной полярности через резистор R5 и диод VD2 моста. Соответственно, при зажигании лампы HL1 к управляющему электроду прикладывается напряжение другой полярности, открывая симистор в обратном направлении. Во время этой фазы параллельно сетевой обмотке подключается резистор R5 через диод VD4.
Время зарядки конденсатора зависит от положения движка переменного резистора R1. Таким образом, при каждой полуволне симистор будет открываться с той или иной задержкой, отсекая передний ее фронт. Чем большая часть полуволны будет отсечена, тем меньшее действующее напряжение будет на первичной, а значит, и на вторичной обмотке сетевого трансформатора. Диоды VD3 и VD4 подключают резисторы.
На месте Т1 может работать любой силовой трансформатор с выходным напряжением 28-30 В. От мощности трансформатора, как было замечено выше, будет зависеть максимальный выходной ток БП. Диоды Д226 можно заменить на любые выпрямительные, рассчитанные на ток не менее 200 мА и напряжение не менее 300 В. Конденсаторы С1, С2 неполярные. КУ208Г можно заменить на КУ208В. Вместо диодов Д245 подойдут любые из серий Д242, Д245, КД213, КД210, Д243, выдерживающие обратное напряжение 50 В и ток 10 А. Конденсатор С5 керамический неполярный.
Диоды VD5-VD8 и симистор VS1 необходимо установить на радиаторы с площадью рассеяния не менее 100 см2 каждый. Если радиатор общий, то элементы придется устанавливать через изолирующие прокладки. При этом площадь рассеяния такого радиатора должна быть соответственно увеличена.
Настройка блока питания сводится к установке необходимого диапазона регулировки напряжения подстроечным резистором R2. Если устройство работает нестабильно (это будет заметно по провалам в свечении лампы HL1 и нестабильному выходному напряжению), то можно попробовать уменьшить номинал резистора R4 до 150 Ом.
Меняем симистор на тиристор
Если в вашем распоряжении не оказалось симистора, можно обойтись обычным тиристором, немного изменив схему его включения.
Поскольку тиристор не может работать в цепи переменного тока, он питает первичную обмотку трансформатора Тr1 через диодный мост. Схема фазоимпульсного управления представляет собой аналог однопереходного транзистора, собранного на Т1, Т2. Питается схема от простейшего параметрического стабилизатора, состоящего из мощного стабилитрона D1 и токоограничивающего резистора R1.
При появлении полуволны начинается зарядка конденсатора С1. Скорость зарядки можно регулировать при помощи переменного резистора P1. Как только напряжение на конденсаторе достигнет определенного уровня, откроется аналог однопереходного транзистора и разрядит конденсатор через управляющий электрод тиристора VS1. Последний откроется, закоротит диодный мост, который в свою очередь подаст на обмотку Тr1 переменное напряжение. По окончании полуволны тиристор закроется. В начале следующей полуволны процесс повторится.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос
Таким образом, при каждой полуволне тиристор будет открываться с той или иной задержкой, отсекая передний ее фронт. Чем большая часть полуволны будет отсечена, тем меньшее действующее напряжение будет на первичной, а значит, и на вторичной обмотке сетевого трансформатора.
На месте VD1-VD4 могут работать любые высоковольтные выпрямительные диоды, выдерживающие ток более 3 А и обратное напряжение не менее 300 В. КТ605 можно заменить на КТ809А, КТ629, КТ935 или MJE340. Вместо КТ361 можно поставить КТ361Е, КТ502Г, КТ502В, КТ3107А, КТ501Ж – KT501K. Тиристор КУ202Н заменим на КУ202М. Конденсатор С1 неполярный. Стабилитрон D1 любой на напряжение стабилизации 14-24 В, выдерживающий ток 1 А. Остальные элементы такие же, что и в предыдущей схеме. Диоды обоих мостов и тиристор установлены на радиаторы.
Универсальные схемы регуляторов напряжения и тока на линейных регуляторах LMxxx для любого блока питания
Для сборки регулируемых блоков питания своими руками очень удобно использовать интегральные стабилизаторы напряжения серии LMххх (отечественный аналог КР142ЕНхх). Рассмотрим несколько схем регулировки напряжения и тока на этих микросхемах.
Линейный регулятор напряжения
Этот регулятор собран на весьма популярной микросхеме LM317, представляющей собой интегральный регулируемый стабилизатор напряжения. Схема позволяет изменять выходное напряжение в пределах 4…30 В и может быть использована в блоках питания любого типа.
Поскольку микросхема относительно маломощная (максимальный ток 1.5 А), в качестве силового ключа в конструкцию добавлен мощный транзистор Т1. Регулировка производится при помощи переменного резистора P1. Вместо транзистора КТ819АМ можно использовать приборы этой же серии с буквами БМ-ГМ. Отечественный аналог LM317 – КР142ЕН12А. Конденсатор С3 керамический. Транзистор Т1 и микросхема DD1 устанавливаются на радиаторы с площадью рассеивания не менее 100 см2 каждый. Схема довольно простая и может быть выполнена навесным монтажом, но для тех, кто любит делать все “по уму”, приведем печатную плату стабилизатора.
Печатная плата регулятора
Регулятор тока
Этот регулятор тоже использует интегральный стабилизатор напряжения LM317, но включенный по схеме стабилизации тока.
Как и в предыдущей схеме, здесь в качестве силового ключа используется мощный транзистор T1. Регулировка тока производится переменным резистором P1. В крайнем верхнем по схеме положении движка ток максимальный, в нижнем – минимальный. Диапазон регулировки – 500 мА … 12 А. Диод D2, включенный последовательно D1, служит для уменьшения нижнего порога регулировки.
В регуляторе можно использовать любые пятнадцатиамперные диоды, выдерживающие обратное напряжение 50 В, КТ818АМ можно заменить на полупроводник той же серии с буквами БМ-ГМ. Конденсатор С3 керамический. Отечественный аналог LM317 – КР142ЕН12А. Резистор R2 должен иметь мощность не менее 10 Вт. Его можно изготовить из обмоточного провода диаметром 0.8-1 мм, взяв кусок необходимой длины. Транзистор VT1 и диоды D1, D2 необходимо установить на радиаторы. Если радиатор общий, то элементы необходимо установить через изолирующие прокладки.
Если необходимо снизить верхний порог регулировки тока, то сопротивление резистора R2 нужно уменьшить. Рассчитать номинал резистора можно по формуле: I = 1.2/R, где I – необходимый максимальный ток в амперах, R – сопротивление резистора R2 в омах.
Экономичный регулятор – стабилизатор тока
Рассмотренная выше схема, нужно признать, не самая удачная. На токоизмерительном резисторе и диодах D1, D2 бесполезно рассеивается приличная мощность. Массогабаритные показатели узла из-за этих же элементов оставляют желать лучшего.
Предлагаемая ниже схема лишена вышеперечисленных недостатков. В ней отсутствуют мощные диоды вольтдобавки, а токоизмерительный резистор имеет очень малое сопротивление, что уменьшает потребляемую им мощность на порядок. Диапазон же регулировки тока у этой конструкции составляет 0 … 10 А, что вполне отвечает требованиям, предъявляемым к лабораторным источникам питания.
Сердцем регулятора-стабилизатора является операционный усилитель LM358, управляющий ключом на мощном полевом транзисторе Т1. Резисторы R1, R2, R3 совместно со стабилитроном D1 представляют собой генератор опорного напряжения, регулировка тока производится при помощи переменного резистора R3. Резистор R5 токоизмерительный. Он выполнен из отрезка обмоточного провода диаметром 0.5-0.8 мм.
На место T1 можно установить транзистор STP55NF06, стабилитрон 1N4734A заменим на любой маломощный с напряжением стабилизации 5.6 В. Отечественные аналоги микросхемы LM358 – КР1401УД5, КР1053УД2, КР1040УД1. Транзистор Т1 должен быть установлен на радиатор с площадью рассеивания не менее 100 см2.
Схема БП с регулировкой тока и напряжения
Изначально на фото печатной платы автора были ошибки, печатка была скопирована и доработана, ошибки устранены.
Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.
При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.
Лабораторный блок питания с регулировкой напряжения и ограничением по току
Ну а теперь попробуем из вышеприведенных узлов собрать блок питания, при помощи которого можно регулировать выходное напряжение и устанавливать ограничение по току. При этом и напряжение, и установленный ток будут стабилизированными.
Сетевое напряжение понижается до 25 В силовым трансформатором Тr1, выпрямляется диодным мостом VD1-VD4, сглаживается конденсатором С1 и поступает на регулируемый стабилизатор, собранный на микросхеме DD1 и транзисторе Т1. Регулировка производится переменным резистором P1.
Далее напряжение установленной нами величины подается на регулятор-стабилизатор тока (микросхема DD2, транзистор Т2). Регулировка величины тока производится переменным резистором P2. Более подробно оба эти узла описаны выше. Поскольку микросхема LM358 не может работать при напряжении питания ниже 7 В, она и генератор опорной частоты (стабилитрон D1) подключены непосредственно к выходу выпрямителя.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос
Таким образом, мы можем выставить необходимое нам напряжение и установить ток, выше которого блок питания не выдаст даже при коротком замыкании. Это позволит обезопасить отлаживаемую самоделку при ошибках в монтаже и случайных замыканиях во время ее регулировки.
В конструкции можно использовать любой сетевой трансформатор соответствующей мощности со вторичной обмоткой на 25-28 В. Диоды VD1-VD4 можно заменить на любые выпрямительные, рассчитанные на ток не менее 10 А и выдерживающие обратное напряжение не менее 40 В. Их, как и силовые транзисторы T1, T2, необходимо установить на радиаторы.
Схема на транзисторах
Несмотря на богатый выбор микросхем самого различного назначения блоки питания на транзисторах не теряют популярности. Попробуем и мы построить лабораторный БП на этих полупроводниковых приборах.
В этой схеме регулятор-стабилизатор напряжения собран на транзисторах T1, T2. В качестве генератора опорного напряжения используется регулируемый стабилитрон D1. Регулировать напряжение в диапазоне 2.5…20 В можно переменным резистором P1.
Регулятор тока собран на транзисторах Т3, Т4 и стабилитроне D2, исполняющем роль источника опорного напряжения. В качестве токоизмерительного элемента используется сам полевой транзистор T4. Если падение напряжения на нем превысит определенный порог, транзистор Т3 начнет открываться и шунтировать Т4, заставляя его закрываться и ограничивать ток через нагрузку. Регулировка порога ограничения производится переменным резистором P2.
В схеме вместо диодной сборки KBPC2510 можно использовать отдельные диоды, выдерживающие ток 10 А и обратное напряжение не менее 30 В. Подойдут, к примеру, Д245, Д242. На месте Т1 может работать КТ805 или КТ819, Т2 заменяем на КТ867А. КТ315 можно заменить на КТ315Б-Д, КТ3102А, КТ312Б, КТ503В-Г, П307. Отечественный аналог TL431 — КР142ЕН19А. Диодный мост, Т1, Т2 и Т4 нужно установить на радиаторы.
Запитать устройство можно от любого сетевого трансформатора с выходным напряжением 20-25 В, способного обеспечить ток в нагрузке не менее 15 А.
Использование импульсных преобразователей
До этого мы строили блоки питания на дискретных элементах, но для этого можно использовать готовые модули. В интернете можно найти все что угодно, а стоит это «что угодно», как правило, недорого. Для работы таких преобразователей на вход нужно подать постоянное напряжение, подойдет любой блок питания с соответствующим выходным напряжением (12-24-36 вольт), например, от ноутбука, или несколько блоков питания для светодиодной ленты одинаковой мощности, соединённых последовательно.
Для начала рассмотрим несколько наиболее популярных преобразователей DC/DC, которые можно использовать для построения лабораторных блоков питания.
Понижающий импульсный преобразователь XL4016
Несмотря на относительно невысокую стоимость, этот преобразователь обладает неплохими характеристиками:
- Uвх. – 3…40 В;
- Uвых. – 1.2…35 В (регулируется);
- Iвх. макс. – 10 А;
- I вых. – 140 мА…12 А (регулируется);
- P вых. макс. – 300 Вт (при принудительном охлаждении);
- I холостого хода – 25 мА;
- защита от КЗ и перегрева – есть.
Ток и напряжение плавно регулируются при помощи подстроечных многооборотных резисторов, которые в лабораторном БП лучше заменить на потенциометры.
Схема включения модуля довольно простая и осуществляется при помощи винтовой колодки с четырьмя клеммами. На первые две клеммы подаем входное напряжение, соблюдая полярность, с двух других снимаем ток и напряжение, заданные подстроечными резисторами.
Существует модификация этого преобразователя, имеющая выходную мощность 80 Вт (Iвых. макс. – 8 А). Внешне она выглядит практически так же, но стоит в полтора раза дешевле и не имеет защиты от КЗ и переполюсовки/перегрева. В остальном эта модификация ничем не отличается от предыдущей.
Повышающий импульсный преобразователь XL4016
Несмотря на то же «имя» и внешнее сходство этот преобразователь имеет существенное отличие от двух предыдущих. Во-первых, он позволяет регулировать только выходное напряжение, причем в гораздо более узком диапазоне. Во-вторых, он повышающий. То есть с его помощью можно получить выходное напряжение выше, чем входное.
Остальные характеристики модуля следующие:
- Uвх. – 10…32 В;
- Uвых. – 12…35 В (регулируется);
- Iвх. макс. – 10 А;
- I вых. – 140 мА…6 А (регулируется);
- P вых. макс. – 150 Вт (при принудительном охлаждении);
- I холостого хода – 25 мА;
- защита от КЗ и переполюсовки – нет.
Приобрести модули XL4016 всех вышеперечисленных модификаций можно на Алиэкспресс. Стоимость – от $3 до $4.
DC to DC Step Down Buck Converter 5V-30V to 0.8V-29V 5A
Практически готовый лабораторный блок питания, позволяющий получить напряжения в диапазоне 0.8…29 В и ограничивать ток от 0 до 5 А.
Как видно из фото, блок состоит из двух модулей – регулировок и измерения. При помощи первого мы регулируем параметры выходного напряжения, второй представляет собой цифровой вольтамперметр с возможностью передачи данных на ПК по интерфейсу RX-TX.
Питается модуль от любого источника постоянного напряжения 5…30 В соответствующей мощности. КПД устройства, если верить производителю, составляет 95%. Выходное напряжение можно регулировать в пределах 0.8…29 В, ток – 0.1…5 А. При выходном токе выше 3 А необходимо использовать принудительное охлаждение.
Стоит такое удовольствие $5.85, а приобрести его можно здесь. Схема подключения модуля предельно проста. На вход подаем питание, с выхода снимаем то, что желаем, устанавливая параметры при помощи подстроечных резисторов. Для подключения устройства к ПК служит трехконтактный разъем на плате дисплея. Распиновка его указана ниже. Двухконтактный разъем не используется.
Для оперативной регулировки напряжения и тока подстроечные резисторы (оба номиналом 10 кОм) стоит заменить на переменные, расположив их на лицевой панели блока питания.
Импульсный преобразователь CN4015-3.1
Этот понижающий преобразователь менее мощный, чем предыдущая модель, но имеет встроенный цифровой дисплей и тоже позволяет регулировать ток и напряжение.
Основные характеристики этого модуля следующие:
- Uвх. – 5…36 В;
- Uвых. – 1.2…32 В (регулируется);
- Iвых. – 0…5 А;
- Pвых. – 75 Вт;
- защита от КЗ и перегрева – есть.
Поскольку дисплей однострочный, он используется для отображения величины как напряжения, так и тока. Для переключения режима служит механическая кнопка. Не совсем удобно, но вполне приемлемо. Дополнительно на этот же индикатор можно вывести значение величины входного напряжения. Есть режим калибровки амперметра и вольтметра по контрольным приборам.
Также устройство оснащено портом USB для зарядки гаджетов и светодиодной индикацией режимов – наличие входного/выходного напряжений, режим стабилизации и пр. Со схемой подключения и назначением органов управления/индикации можно познакомиться на рисунке, приведенном ниже.
Приобрести этот преобразователь можно на Алиэкспресс за $4, перейдя по этой ссылке.
Напряжение на порте USB соответствует установленному выходному напряжению, а не фиксированным 5 В. С одной стороны, это позволяет производить ускоренную зарядку, с другой, можно запросто сжечь гаджет, рассчитанный не более чем на 5 В.
Импульсный преобразователь повышенной мощности
Этот модуль может обеспечить ток до 20 А, обладает расширенным диапазоном регулировки напряжения, и им мы закончим наш небольшой обзор импульсных преобразователей DC/DC с регулировкой по выходу. Устройство позволяет плавно регулировать ток и напряжение, имеет защиту от КЗ, перегрева и перегрузки.
Взглянем на основные характеристики модуля:
- Uвх. – 6…40 В;
- Uвых. – 1.2…36 В (регулируется);
- Iвых. – 0…20 А (рекомендуется не более 15 А);
- Pвых. – 300 Вт;
- защита от КЗ – есть (самовосстановление, не держит длительной перегрузки).
Модуль имеет светодиодную индикацию работы и переключатель, отключающий выходное напряжение. Схема включения преобразователя и назначение органов управления приведены ниже, а сам модуль можно приобрести за $3.3 на все том же Алиэкспресс.
Поделки своими руками для автолюбителей
Приветствую всех, особенно начинающих радиолюбителей, поскольку именно они очень часто сталкиваются с проблемой поиска источников питания для своих самоделок и поэтому в ходе этой статьи будет рассмотрен вариант постройки простейшего лабораторного блока питания с возможностью ограничения тока.
Наш блок питания может обеспечивать на выходе стабилизированное напряжения от ноля до пятнадцати вольт и ток до 1.5 Ампер, эти параметры можно изменять и походу поясню, как это сделать.
В проекте специально использованы наиболее доступные компоненты, чтобы ни у кого не возникло трудности с их поиском, а теперь давайте рассмотрим схему и поймём принцип её работы.
Схема состоит из трех основных частей
Сетевой понижающий трансформатор (красным обозначен), он обеспечивает нужные для наших целей выходные параметры, а также гальваническую развязку. В моем варианте был использован трансформатор от блока питания старого кассетного магнитофона,
подойдет и любой другой, основные параметры блока питания будут зависеть в первую очередь от трансформатора, притом нужно учитывать один момент — максимальное выходное напряжение лабораторного блока питания будет на несколько вольт меньше, чем напряжение на выпрямителе.
Трансформатор подбирается с нужным током, в моем случае имеются две обмотки по 20 вольт, ток каждой из них составляет около 0,7 Ампер, обмотки подключены параллельно, то есть общий ток около полутора ампер. Вторая часть из себя представляет выпрямитель, для выпрямления переменного напряжения в постоянку и конденсатор, для сглаживания напряжения после выпрямителя и фильтрации помех.
И наконец третий узел — это плата самого стабилизатора, давайте её рассмотрим поподробнее…
Уже постоянное напряжение поступает на плату стабилизатора, где стабилизируется до некоторого уровня. Режим стабилизации будет зависеть от стабилитрона, в нашем случае он на 15 Вольт, именно он задает максимальное выходное напряжение блока питания. Беда в том, что ток у таких стабилитронов не велик, поэтому его нужно усилить с помощью простого каскада усиления по току, построенного на транзисторах VТ 1 и VТ 2, транзисторы подключены таким образом, чтобы обеспечить максимально большое усиление, то есть по сути это аналог составного транзистора.
Регулятор напряжения в лице переменного резистора R1, выполняет функцию простого делителя напряжения и может быть рассмотрен, как 2 последовательно соединенных резистора с отводом от места их соединения.Изменяя сопротивление каждого из них, мы можем регулировать напряжение. Это напряжение усиливается ранее указанным каскадом.
Второй переменный резистор позволит ограничивать выходной ток. Если такая функция не нужна, то схема будет выглядеть следующим образом.
Теперь подробнее о компонентах, большую их часть, а если точнее все компоненты можно найти в старой аппаратуре, например в телевизорах, усилителях, приемниках, магнитолах и прочей технике.
Также возможно использовать импортные аналоги, которые имеют одинаковое расположение выводов. В архиве сможете найти некоторые варианты замены транзисторов, как на советские, так и на импортные.
ожно использовать готовые мосты, которые можно найти в компьютерных блоках питания или же собрать мост из любых четырех аналогичных диодов с током от двух ампер.
Для увеличения выходного напряжения блока питания сначала нужно найти соответствующий трансформатор, затем заменить стабилитроны на более высоковольтные, скажем на 18 или 24 вольта, будет зависеть от нужного вам выходного напряжения.
Резистор ограничивает ток через стабилитрон, расчет производится исходя из напряжения выпрямителя. Рассчитываю так, чтобы ток через стабилитрон не превышал значение 20-25 миллиампер, в случае стабилитрона на пол ватта и 40-45 миллиампер в случае если стабилитрон одноваттный.
Если под рукой не оказалось нужного стабилитрона, то можно использовать несколько последовательно соединенных с меньшим напряжением,
в итоге сумма их напряжения будет равняться конечному напряжению стабилизации. Схема стабилизатора работает в линейном режиме, поэтому силовой транзистор VT 2 нуждается в радиаторе.
А теперь давайте проверим конструкцию в работе
и как видим напряжения плавно регулируется от нуля до пятнадцати вольт
Теперь проверим функцию ограничения тока, обратите внимание без выходной нагрузки вращая регулятор тока, напряжение у нас не будет меняться, что свидетельствует о корректной работе функции ограничения.
Выходной ток также регулируется достаточно плавно, минимальная граница 180 миллиампер.
Максимальный выходной ток в моём случае, составляет около полутора ампер, этого вполне достаточно для средних нужд большинства радиолюбителей.Несмотря на простоту конструкции, при токах около одного Ампера, наблюдаем просадку выходного напряжения меньше 200 милливольт, это очень хороший показатель для стабилизаторов такого класса.
Введите электронную почту и получайте письма с новыми поделками.
Блок питания может переносить короткие замыкания с продолжительностью не более 5 секунд, в этом режиме ток ограничивается в районе одного — семи Ампер.
Монтаж при желании можно сделать навесным,
но более красиво смотрится конструкция на печатной плате, тем более, что я ее для вас нарисовал,
а файл платы также можете скачать с общим архивом проекта.
В качестве индикаторов советую использовать стрелочные приборы,
чтобы не путаться с подключением, хотя можно и цифровые.
По мне, это довольно годный вариант в качестве первого блока питания, так что смело собирайте.
Архив к статье: Автор; АКА КАСЬЯН
Популярное;
- Лабораторный блок питания с регулировкой напряжения и тока
- Универсальный источник питания 0-30 В с регулировкой тока от 0-3 А
- Токовая электронная нагрузка
- Прибор для проверки стабилитронов, схема
- Мощное зарядное устройство для любых аккумуляторов
- Мощный, регулируемый блок питания на lm317
- Простой лабораторный блок питания из старого компьютерного блока питания.
- Стабилизатор напряжения с регулируемой нагрузкой для ЗУ
Цифровой лабораторный блок питания из модулей с Алиэкспресс
Рассмотренные преобразователи позволяют собрать простой лабораторный блок питания, который вполне способен работать в мастерской по ремонту или у радиолюбителя. Но если вы хотите больше полезных функций, простое и наглядное управление, то обратите своё внимание на преобразователи напряжения ЖК-дисплеем и цифровым управлением. Такие модульные преобразователи можно купить на Алиэкспресс.
Импульсный преобразователь MDP-XP
По сути, устройство является готовым блоком питания с регулировкой по току и напряжению, а в этот раздел оно попало лишь потому, что выполнено в виде отдельных модулей и с возможностью наращивания архитектуры подключением дополнительных компонентов.
Один из модулей является, собственно, преобразователь, и он может работать самостоятельно. Второй – модуль управления, расширяющий возможности первого модуля и обеспечивающий дополнительные удобства. Предлагаем посмотреть подробное видео об этом преобразователе и как с ним работать.
Купить на Aliexpress
Модуль питания MDP-P905
MDP-P905 представляет собой импульсный понижающий и повышающий DC/DC преобразователь с регулировкой напряжения в пределах 1.2…30 В и тока в интервале 0…5 А. Устройство имеет режим стабилизации тока, настраиваемую защиту от перегрузки по току и мощности. Преобразователь может работать практически с любым блоком питания с напряжением 4.2…30 В соответствующей мощности, от которой зависит отдаваемая модулем нагрузка.
Настройка прибора производится при помощи трех кнопок, валкодера и дисплея. На дисплее можно увидеть информацию по входному и выходному напряжению, току, отдаваемой мощности и температуре платы преобразователя. Этот же дисплей используется для установки величины тока и напряжения. Также имеется два входа для подачи входного напряжения, порт USB для программирования (он же для питания модуля управления) и два гнезда для подключения выходного кабеля. Назначение разъемов и органов управления изображено на фото ниже.
Для того чтобы запустить этот блок, его необходимо запрограммировать. Сделать это несложно. Достаточно зайти на сайт производителя, скачать файл на ПК и перенести его на модуль, подключив последний к ПК через интерфейс USB. Подключаем блок питания с выходным напряжением не более 30 В, оснащенный коннектором 5.5х2.5 (такие используются для питания ноутбуков) или вилкой USB С. К выходным гнездам подключаем кабель питания нагрузки и можно работать. Про помощи функциональных кнопок выбираем нужный режим, настраиваем необходимые выходные ток и напряжение, подключаем нагрузку.
Купить на Aliexpress
Модуль управления MDP-M01
Этот блок, как было отмечено выше, расширяет функционал модуля питания. При необходимости к нему можно подключить до шести таких модулей для независимой или совместной работы.
Модуль управления MDP-M01
С MDP-XP блок соединяется по беспроводному каналу. Единственное, что он требует для работы, – напряжение 5 В, которое можно получить от любого соответствующего адаптера с USB-разъёмом или подключив его к MDP-XP соответствующим кабелем (идет в комплекте). Ну и конечно, MDP-M01 нужно запрограммировать, скачав файл с сайта производителя и установив связь с модулем питания по беспроводному каналу.
Купить на Aliexpress
Управление устройством и подключенными к нему модулями питания осуществляется при помощи пяти функциональных кнопок и двух поворотных ручек. Графический цветной дисплей служит для отображения входного и выходного текущих токов и напряжений, потребляемой мощности, отданного количества энергии, предустановленных величин U и I. Дополнительно на этом же дисплее мы можем увидеть график, на котором отображается напряжение питания нагрузки и потребляемый ею ток.
Вариант отображения информации на дисплее
В комплекте с устройством идет кабель для подключения к выходу преобразователя и сопряжения модуля питания с модулем управления. Блок питания в комплект не входит.
Комплект, как мы убедились, неплохой. Огорчает лишь одно – даже в минимальной конфигурации он стоит немалых денег. Ну а кто все же решится, может приобрести его тут.
Набор DPS5020-USB-BT для сборки лабораторного блока питания
Набор хоть и не из дешевых, но имеет в комплекте все, необходимое для сборки мощного регулируемого лабораторного блока питания, включая многофункциональный дисплей и платы сопряжения с ПК по USB или Bluetooth (опция). Единственное, придется докупить или изготовить подходящих размеров корпус и импульсный блок питания AC/DC соответствующей мощности. Но об этом позже.
Основной блок импульсного преобразователя питается от внешнего блока питания с напряжением 6…60 В. При этом выходное напряжение можно выставить в диапазоне 5…50 В, а ток регулируется от 0 до 20 А (при соответствующей мощности блока питания).
Основные характеристики модуля импульсного преобразователя:
- Uвх. – 6…60 В;
- Uвых. – 5…50 В (регулируется);
- Iвых. – 0…20 А (регулируется);
- Pвых. – до 1000 Вт;
- точность регулировки напряжения – 0.01 В;
- точность регулировки тока – 0.01 А.
Модуль оснащен одним гнездом, к которому можно подключить идущим в комплекте шлейфом (в комплекте) адаптер USB или Bluetooth в зависимости от того, какой узел необходим. Охлаждение силовых транзисторов, установленных на радиатор, принудительное.
Четырехстрочный цветной дисплей имеет встроенный контроллер, 3 кнопки управления и валкодер для установки напряжения, ограничения тока и мощности. Подключается к модулю преобразователя при помощи двух шлейфов (в комплекте). На дисплее можно увидеть величины входного и выходного напряжения, выходной ток, уровень срабатывания защиты и текущую выходную мощность.
Верхний диапазон измерений прибора – 30 В и 3 А. Для его расширения на импульсном преобразователе установлены шунты и добавочные резисторы.
Как можно увидеть из описания, для сборки лабораторного блока питания из этих модулей не понадобится даже паяльник. Все на колодках. Набор DPS5020-USB-BT можно найти по этой ссылке.
Теперь о корпусе. Его, конечно, можно изготовить самостоятельно, но на том же Алике можно найти еще один набор, в который входит корпус, дополнительный вентилятор охлаждения с преобразователем 12 В для его питания, гнезда для подключения нагрузки и внешнего источника питания, выключатель, провода, наконечники и крепежные винты.
Ну и несколько фото процесса сборки.
Импульсный преобразователь с дисплеем DP50V5A
Ну и напоследок, собранная на базе дисплея DPS3003 конструкция. Такой дисплей использовался в блоке питания, описанном выше. Конструкторы не стали мудрствовать и просто прикрутили небольшой импульсный преобразователь прямо к дисплею. Получилась довольно компактная конструкция, позволяющая регулировать выходное напряжение в диапазоне 0…50 В, а ток 0…5 А
Основные характеристики этого устройства следующие:
- Uвх. – 6…55 В;
- Uвых. – 0…50 В (регулируется);
- Iвых. – 0…5 А (регулируется);
- Pвых. – до 250 Вт.
Подключение такого устройства не составит труда – 2 винтовые клеммы, расположенные сзади дисплея, промаркированы:
- +IN – плюс Uвх.;
- -IN – минус Uвх.;
- +OUT – плюс Uвых.;
- -OUT – минус Uвых.
Купить такое устройство можно, перейдя по этой ссылке:
Купить на Aliexpress