Здравствуйте Дорогие читатели блога ! В нашем 21-ом веке постоянно происходят какие-либо изменения. Особенно остро они замечаются в технологическом аспекте. Изобретаются более дешёвые источники энергии, повсеместно распространяются различные девайсы, которые должны упростить жизнь людям. Сегодня мы поговорим о такой вещи как солнечная батарея – устройство не прорывное но, тем не менее, которое с каждым годом всё больше и больше входит в жизнь людей. Мы поговорим о том, что представляет собой данное устройство, какими преимуществами и недостатками она обладает. Также уделим внимание тому, как собирается солнечная батарея своими руками.
Немного теории
Основной материал для производства панелей — кремний, с добавлением бора и фосфора. Они разнесены по разным сторонам друг от друга. Под воздействием солнечного света от фосфора (сторона n–типа), отделяются свободные электроны и начинают двигаться в сторону пластины из бора. Борная пластина, обладая свободными элементами, или своеобразными дырками (сторона p–типа) принимает свободные электроны. Или появляется p–n переход. Теперь остается снять с пластины это движение электронов в виде электрического тока.
Коротко об устройстве и работе
Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.
Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.
При этом световые кванты «отпускают» свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.
Галерея изображений
Фото из
Сборка солнечной батареи из кремниевых пластинок
Формирование плюсовой токоведущей дорожки
Создание минусовых токоведущих линий с задней стороны
Подключение проводника и блокирующего диода
В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора — пассивного химического элемента.
В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.
На поверхности пластины имеются металлические «дорожки», на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.
Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте далее.
Верхний слой пластин-фотоэлементов покрыт слоем, который не допускает отражение солнечного света от пластин, повышая их КПД
Целесообразность самодельной солнечной панели
Понимание этих физических свойств кремния поможет в том, чтобы была собрана солнечная панель своими руками. Для начала работ необходимо подготовиться.
В любом случае запасной источник электроэнергии всегда востребован. Да еще и себестоимость солнечного киловатта существенно ниже традиционного электричества. Конечно, многие хотят приобрести и установить заводские солнечные панели. Отпугивает цена на весь комплект оборудования для домашней электростанции. Поэтому очень актуален вопрос — как собрать солнечную батарею самому?
Более грамотный подход — рассчитать количество вырабатываемой энергии одним модулем:
W = k*Pw*E/1000
Где:
- Е — количество солнечной инсоляции за известный период времени;
- k — коэффициент, формирующий летом — 0,5, в зимний период — 0,7;
- Pw — мощность одного устройства.
Исходя из планируемой полной мощности энергопотребления и расчётных данных, высчитывается общая мощность потребления электроэнергии.
Теперь если итог разделить на предполагаемую производительность одного фотоэлемента в финале получим необходимое количество модулей.
Проект системы и выбор места
Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.
Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант — батареи, которые могут менять угол наклона.
Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.
Единственное условие — батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.
Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.
Для европейской части стран СНГ рекомендуемый угол стационарного наклона 50 — 60 º. Если в конструкции предусмотрено устройство для изменения угла наклона, то в зимний период лучше располагать батареи под 70 º к горизонту, в летнее время под углом 30 º
Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300 кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.
Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты. Советуем также ознакомиться с принципом расчета необходимого количества солнечных батарей.
Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.
Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка аккумулятора гелиосистемы. Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.
Размещая батареи на наклонной крыше дома, не забывайте об угле наклона панели, идеальный вариант, когда у батареи есть устройство для сезонного изменения угла наклона
Необходимый инструмент и материалы
Если не пугает объем и сложность предстоящей работы, необходимо основательно подготовиться.
Основной элемент — сами пластины. Количество элементов подбирается исходя из выходных параметров будущей панели. Но основное условие — их технические характеристики должны быть идентичны друг другу. И если нет опыта в сборке подобных конструкции, лучше будет взять несколько элементов про запас, с учетом брака на первых этапах работы.
Продолжаем комплектовать материалы:
- ДСП;
- металлический профиль и уголок (лучше из алюминия);
- поролон высотой 1,6–2,7 см;
- основание под пластины из прозрачного материала;
- набор из саморезов и шурупчиков;
- несколько туб силиконового герметика;
- электропроводка;
- клемные зажимы.
Объем сырья мы не указываем т.к. оно находится в прямой зависимости от габаритов и количества деталей, из которых будет собрана самодельная солнечная батарея.
Теперь инструмент и вспомогательные материалы:
- шуруповёрт;
- ножовка по металлу и ножовка по дереву;
- 40 Ватный электрический паяльник;
- электрический тестер;
- флюс и припой для пайки;
- технический спирт, для обработки поверхностей под пайку;
- ватные диски–тампоны.
Материалы для создания солнечной пластины
Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:
- силикатные пластины-фотоэлементы;
- листы ДСП, алюминиевые уголки и рейки;
- жёсткий поролон толщиной 1,5-2,5 см;
- прозрачный элемент, выполняющий роль основания для кремниевых пластин;
- шурупы, саморезы;
- силиконовой герметик для наружных работ;
- электрические провода, диоды, клеммы.
Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.
Теперь рассмотрим самые важные материалы более подробно.
Кремниевые пластины или фотоэлементы
Фотоэлементы для батарей бывают трёх видов:
- поликристаллические;
- монокристаллические;
- аморфные.
Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 — 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов — 10 лет.
Солнечную батарею собирают из модулей, которые в свою очередь составляют из фотоэлектрических преобразователей. Батареи с жесткими кремниевыми фотоэлементами представляют собой некий сэндвич с последовательно расположенными слоями, закрепленными в алюминиевом профиле
Монокристаллические фотоэлементы могут похвастаться более высоким КПД — 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.
Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.
Пленочные фотопреобразователи получают путем нанесения тонкого слоя аморфного кремния на полимерную гибкую поверхность
Гибкие батареи с аморфным кремнием — самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 — 6 %, но пленочные системы крайне удобны в укладке.
Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.
Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.
При покупке фотоэлементов поинтересуйтесь у продавца способом доставки, большинство продавцов используют метод воскования, чтобы предотвратить разрушение хрупких элементов
Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.
Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.
Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.
Галерея изображений
Фото из
Поликристаллическая фотоэлектрическая пластина
Лицевая и тыльная стороны кремниевой пластины
Монокристаллическая фотоэлектрическая пластина
Обратная сторона монокристаллической пластины
Каркас и прозрачный элемент
Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.
Второй вариант более предпочтителен по целому ряду причин:
- Алюминий — лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
- При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
- Не впитывает влагу из окружающей среды, не гниёт.
При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.
От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.
Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта — оргстекла. Чуть ниже показатель преломления света у поликарбоната.
От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже — обычное стекло.
Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.
По соотношению стоимости к показателям преломления света и поглощения ИК-излучения оргстекло — самый оптимальный вариант для изготовления гелиобатареи
Совет по подбору панелей
Чтобы получить на выходе мощность в 145 Вт при напряжении 18 В и при этом не сильно вылезти из бюджета, лучше присмотреться к комплектам класса В.
На комплекты класса В приходится основная доля всего рынка гелиобатарей. Для тех, кто хочет попробовать собрать панели своими руками лучше присмотреться именно к таким производителям. Но таких компаний в настоящее время очень много и, как правило, они занимаются не производством, а перепродажей готовых компонентов. Либо в целях экономии активно применяют ручную сборку панелей, что закономерно приводит к снижению качества. Поэтому надо быть готовым к тому, что заявленные характеристики могут не совпадать с реальными параметрами. И рассчитывать на гарантийные обязательства от таких малоизвестных фирм, тоже не стоит.
Если приобрести 36 штук китайских панелей на сайте Alibaba, это обойдётся в 3200 рублей. При цене готового комплекта с такими же характеристиками в 6250 рублей — выгода весьма ощутимая.
Следовательно, идея изготовить солнечные батареи для дома своими руками приобретает еще большую актуальность.
Что входит в комплектацию
Мощность и категория – два фактора, которые в основном влияют на весь состав комплектующих.
Обычный набор это:
- Зарядочный контроллер;
- Станция (аккумуляторная);
- Устройство инвертора;
- Аппаратура для поддержки соединений.
Выбирая, к примеру, первую категорию комплекта, номинальная мощность которого рассчитана на два киловатта, надо ориентироваться на минимальную сумму порядка ста двадцати тысяч рублей.
Все затрачиваемые средства должны обязательно сравниваться с эффектом от экономии, который рассчитывается исходя из стоимости одного киловатта за час, вырабатываемого централизованной сетью и той, которую способна создать солнечная батарея.
Пользуясь наисвежайшей статистикой, предоставляемой рынком подобных устройств, можно определить, что такое отношение будет равно восемь целых восемь десятых. Проще говоря, солнечная станция предоставляет энергию во столько раз дешевле, нежели общая сеть, когда они выбраны в равнозначном эквиваленте.
Одним из основных критериев для выбора направления, в котором используется агрегат, считается фактор обеспечивающий работу без перебоев всех автоматических компонентов в отопительных системах, а также слежения охраны и оповещения пожарной службы в случае необходимости. Сюда относится домашняя сеть компьютеров и группа датчиков для контроля и проведения измерений.
Какие панели покупать
Все изделия такого класса делятся на:
- Монокристаллические (более дорогие).
- Поликристаллические (аморфные).
1–ые обладают более однородной структурой из–за чего КПД намного больше, чем у аморфных. Собственно именно это и обуславливает рост цены.
Отличить эти фотоэлементы друг от друга очень просто, как по цвету (монокристалл тёмно–синий), так и по форме.
Что выбрать — решать покупателю, но следует знать, что более дешевые аморфные ячейки делаются на мелких китайских предприятиях с отклонениями в качестве материалов, но с более низкой себестоимостью.
Чтобы рассчитать количество фотоэлементов нужно ориентироваться на проектируемые выходные данные самодельных панелей.
По паспортным данным с одного квадратного метра панелей снимается 0,12 кВт/час электроэнергии. Для бытовых нужд достаточно получать с устройства 280–320 кВт в месяц.
Все элементы должны быть одного размера и номинала.
Если приобретается фотоэлемент с защитным восковым покрытием, то его после покупки надо удалить.
Последовательность действий по подготовке фотоэлементов:
- Панели распаковать.
- Обработать горячей (90±5 градусов Цельсия) водой.
- После того как воск растаял, все элементы разъединить друг от друга.
- Очистить каждую панель от остатков воска горячей водой.
- Разложить обработанные панели на мягкой ткани и просушить.
Классификация фотоэлектрических модулей
Солнечные электростанции различаются по интенсивности и принципу действия встроенных фотоэлектрических элементов. Некоторые модули значительно проигрывают в мощности, однако, меньше стоят. Отличаются методом изготовления из кремния деталей и бывают:
- тонкопленочные, являющиеся недорогими и маломощными модулями. Ключевым компонентом в этой батарее является пленка, изготовленная из аморфного кремния. Она занимает большую площадь батареи, однако, энергию генерирует в малом количестве. При установке монтируется как на крышу, так и на любые поверхности;
- полимерные, изготовленные их кремневодорода. Силан наносят на подложный изоляционный материал батареи. Кроме того полимерный элемент можно нанести на мягкую подложку, поэтому монтировать аморфную станцию можно на любой неровной поверхности;
- монокристаллические, имеющие собственный надежный корпус, защищенный от попадания влаги и пыли. Благодаря одиночным кристаллам отличаются надежной генерацией энергии в течение большого промежутка времени. Стабильные в работе модули, которые чаще всего устанавливаются в России, Украине и Белоруси;
- мультикристаллические, изготовленные из солнечных элементов со множеством разнонаправленных кристаллов. Меньше подвержены воздействию высокой и низкой температуры. Однако для генерации энергии этим батареям нужна большая площадь.
Собирают солнечные модули только из фотоэлектрических элементов одного размера. В противном случае максимальная мощность тока маленьких пластин будут ограничивать работу крупных.
Изготовление каркаса
Солнечная батарея своими руками начинает свой путь с изготовления каркаса из подручных материалов.
Размеры для него рассчитываются с учетом параметров самих фотоэлементов.
Для рамки можно использовать уголок из алюминия с высотой полок 70х90мм.
Почему именно алюминий?
- Вес конструкции. Вся конструкция в итоге будет немало весить, а это легкий и достаточно прочный металл.
- Не нуждается в антикоррозийной обработке.
Чтобы устранить попадание влаги, все стыки каркаса необходимо подвергнуть обработке герметиками на силиконовой основе.
Теперь, когда есть металлическое обрамление, можно приступить к изготовлению корпуса солнечной панели.
Расчет и проектирование
Для расчетов солнечной батареи, собранной дома, обязательно потребуется перечень всех электроприборов и оборудования, имеющихся в доме. Сразу же нужно выяснить потребляемую мощность каждого из них.
Данные о мощности указываются в маркировке или в техническом паспорте устройства. Их значения довольно приблизительные, поэтому для панели, работающей с инвертором нужно ввести поправку, то есть среднее энергопотребление умножается на поправочный коэффициент. Полученная таким образом общая мощность дополнительно умножается на 1,2, учитывая потери при работе инвертора. Мощные приборы при запуске потребляют ток, в несколько раз превышающий номинальный. В связи с этим, инвертор также должен в течение короткого времени выдерживать двойную или тройную мощность.
Корпус
Здесь задача попроще — изготовить некое подобие деревянного ящичка с низкими (2 см) бортиками.
Перед тем как сделать солнечную батарею своими руками не мешало бы подготовить материалы. Вот типовая пошаговая инструкция:
- Основа корпуса мастерится из цельного куска ДСП. Борта, прикручиваются саморезами к листу ДСП.
- В деревянных бортах высверлить дыры для вентиляции.
- На листе ДСП также проделываются дрелью вентиляционные дыры, шагом в 10 см по всей площади панели.
Собственно основа готова. Теперь сборка солнечной панели продолжится с установки солнечных пластинок.
Сборка фотоэлементов
Перед тем как приступить к этому этапу, необходимо изучить, как выглядит схема солнечной батареи. Элементы тщательно разложить на основе. Важно сохранить расстояние между ними в 3–5 мм. Можно воспользоваться крестиками под монтаж кафельной плитки.
К пайке необходимо подготовиться — контакты вывести по порядку. Положительные, по одной стороне, отрицательные по другой.
Контакты на панелях могут уже быть готовыми и закреплены по месту. Если это не так — их придется приготовить и припаять самостоятельно.
Самодельная солнечная батарея делается из кристаллических элементов. Это довольно хрупкий материал, поэтому работать с ними необходимо с особой аккуратностью.
Изготовление солнечных батарей требует особого отношения. Чтобы паять солнечные пластины правильно и при этом их не повредить, необходимо бережное обращение с деталями. Правильно подобрать сам паяльник с допустимой мощностью — 24 /36 Вт.
Когда все пластины будут пропаяны, схему необходимо дополнить п/п диодами от саморазряда (контролером заряда) и акустическим кабелем на выходе для подключения.
Все элементы панели своими руками зафиксировать при помощи герметика.
Теперь все элементы подобраны и уложены внутри рамы.
Тестирование батареи перед герметизацией
Работы подходят к завершению, но перед дальнейшей сборкой панели с элементами из Китая необходимо проверить, а работает ли собранная конструкция вообще?
Велика вероятность некачественной пайки контактов. Собственно говоря, такую проверку лучше делать после пайки каждого ряда фотоэлементов — это очень упростит обнаружение мест некачественных соединений.
Тестирование проводится на открытой местности в солнечную погоду в полдень, когда солнце не закрыто облаками. Для замеров подойдет обычный цифровой тестер.
Подготовленную батарею необходимо вынести на улицу, направить на солнце под нужным углом наклона, который рассчитывается заранее. Тестер переключаем в режим замера силы тока и проводим замеры токов короткого замыкания.
В теории сила тока панели должна быть на 0,5–1,0 А пониже, чем ток короткого замыкания. Если тестер показывает силу тока выше 4,5 А, значит гелиобатарея собрана нормально и вполне работоспособна.
Если показания отличаются в меньшую сторону, надо искать слабый припаянный контакт в соединении фотоэлементов.
Герметизация
После того как испытания покажут работоспособность всех элементов наступает этап герметизации уже уложенных в каркас фотоэлементов. Для этой цели лучше всего подходит эпоксидный клей.
Но его применение неизбежно вызовет удорожание всего проекта “панели своими руками”. Хотя эпоксидку вполне можно заменить силиконовым герметиком, но не любым, а тем, который предназначен для использования при отрицательных температурах окружающей среды.
Герметизацию можно делать по–разному:
- залить все сделанные элементы сразу от края и до края;
- заполняются пустоты между фотоэлементами и краями рамки.
При работе следует учесть некоторые моменты:
- Поверхность должна быть идеально ровной. Иначе, элементы под свои весом поползут в сторону.
- Затвердевание происходит быстрее при высоких температурах окружающего воздуха. Для всех герметиков есть своя инструкция.
Если все учтено и выполнено правильно, в результате получим водоотталкивающую и абсолютно прозрачную поверхность. Собираем панель дальше.
Особенности крепления крышки:
- После гидроизоляции собранной батареи ее можно закрывать крышкой и фиксировать. Но сделать это можно только после того как клеевой состав полностью засохнет. Если поторопиться и закрепить крышку, клей будет испаряться и останутся мутные полосы на оргстекле.
- На кабель, который теперь выходит из панели, изготовить двухконтактный разъем для контроллера.
- Работа батареи еще раз проверяется.
Теперь панель, собранная своими руками в домашних условиях, готова к установке и ее подключению к домашней гелиосистеме.
Установка готовой системы
- Для полноценной работы солнечных панелей нужно дополнительно приобрести инвертор тока с 12 В на 200 В, для перевода постоянного тока с панели в переменный.
- Чтобы не перегружать систему и для сбережения электричества, нужны хотя бы два гелевых или AGM аккумов.
- Система не будет полной без контроллера, который будет руководить работой накопительных аккумуляторов.
Место установки выбирается еще до того как сделать солнечную панель. Оно также играет большую роль.
Солнечные панели можно ставить на земле, на стенах или крыше. Тут дело вкуса и свободных площадей. Но важно, чтобы на панель попадало максимум солнечного света. Поэтому любая падающая тень на конструкцию крайне нежелательна.
Часто можно увидеть систему из подобных китайских панелей на кровлях домов. Но в любом случае необходимо убедиться в надежности самой кровли, и сможет ли она выдержать дополнительный вес от солнечных элементов. И это существенное условие. Потому как кроме монтажа самих гелиопанелей, к ним добавится вес кронштейнов и поворотной системы, без которой не обойтись — угол установки строго регламентирован. Он должен составлять 30–40 градусов к крыше.
Если панели из тонкопленочных материалов, нужно оберегать их от дополнительных ветровых нагрузок и давления от накопившегося снега. Нужна ее надежная ветрозащита.
Неплохое решение для дачи — наземная установка на металлической раме из надежного профиля сечением 25х25 мм или больше. Перед рамной конструкцией должна изготавливаться установка ветрорассекателей и снегозащиты.
Что влияет на эффективность солнечных батарей?
Теперь понятно, что собрать солнечную батарею своими руками вполне возможно. Но надо понимать, что эффективность такого источника энергии зависит от многих факторов. Причем это касается девайсов всех типов — и заводских, и самодельных:
- Фотоэлементы теряют свою производительность с повышением собственной температуры.
- Если часть панели попадает в тень и солнце освещает только часть фотоэлементов, как следствие — общее падение выходного напряжения.
- Если панели оснащены дополнительными линзами для концентрации солнечного света, то их эффективность падает до нуля в пасмурную или облачную погоду. Солнца нет и фокусировать просто нечего.
- Максимально высокая эффективность возможна при грамотном подборе нагрузочного сопротивления. Для этой цели фотопанели лучше самому подключать не напрямую к потребителям энергии или к аккумуляторам, а через специальный контроллер. С его помощью батарея будет работать максимально эффективно.
Преимущества и недостатки этого вида энергии
Из преимуществ можно выделить следующие:
- Наше Солнце – экологически чистый источник энергии, который не способствует загрязнению окружающей среды. Солнечные батареи не выбрасывают в окружающую среду различные вредные отходы.
- Солнечная энергия неисчерпаема (естественно, пока Солнце живо, но это ещё на миллиарды лет вперёд). Из этого следует, что солнечной энергии вам точно хватило бы на всю жизнь.
- После того, как вы осуществите грамотный монтаж солнечных батарей в дальнейшем вам не потребуется их часто обслуживать. Всё что надо – один два раза в год проводить профилактический осмотр.
- Внушительный срок службы солнечных батарей. Этот срок начинается от 25-ти лет. Также стоит подметить, что даже в прошествии данного времени они не потеряют в эксплуатационных характеристиках.
- Установка солнечных батарей может субсидироваться государством. К примеру это активно происходит в Австралии, Франции, Израиле. Во Франции и вовсе возвращается 60% стоимости солнечных панелей.
Из недостатков можно выделить следующие:
- Пока что солнечные батареи не выдерживают конкуренции, к примеру, если требуется вырабатывать большое количество электроэнергии. Это удачней получается у нефтевой и ядерной промышленности.
- Производство электроэнергии напрямую зависит от погодных условий. Естественно, когда за окном солнечно – ваши солнечные батареи будут работать на 100% мощности. Когда же будет пасмурный день – этот показатель будет падать в разы.
- Для производства большого объёма энергии солнечным батареям требуется большая площадь.
Как можно видеть, у данного источника энергии плюсов всё равно больше чем минусов, а минусы не такие страшные как казалось бы.
Солнечная батарея из старых транзисторов
Те, кто занимается ремонтом радиоаппаратуры, со временем накапливают свой стратегический запас радиодеталей. Среди них могут оказаться транзисторы или диоды в металлическом корпусе. Для ремонта современных аппаратов они уже не подходят из–за больших габаритов, но собрать из старых транзисторов небольшую фотопанель — вполне реально.
Лучше всего из подручных материалов найти транзисторы типа КТ или П:
Чтобы добраться до фотоэлемента, необходимо аккуратно срезать ее верхнюю часть. Под ней и находится кремневый полупроводниковый элемент — фотоэлемент. Срезать крышечку можно, если зажать аккуратно деталь в тиски, ножовкой по металлу.
Под ней видна пластина. Именно она и будет основным элементом в будущей схеме.
Есть три выводных контакта:
- база;
- эмиттер;
- коллектор.
Нам нужен коллектор. Именно он обладает хорошей разностью потенциалов.
Соберите начальную цепочку по схеме:
Собирать все элементы необходимо на ровной поверхности из диэлектрического материала. Исходя из параметров будущей фотопанели, собирается последовательная цепочка из деталей. И потом набирается параллельная группа из таких цепочек.
Если один транзистор способен выдавать 0,35 В и силу тока при КЗ в 0,25 мкА, то подобрать расчетное количество цепочек из радиодеталей можно опираясь на эти характеристики.
Не стоит забывать, что собранная батарея из светодиодов будет нуждаться в охлаждении. Поэтому не рекомендуется размещать детали плотно и близко друг от друга. Так будет лучше работать естественная вентиляция.
Опытные мастера знают, что такая конструкция неудобна из–за больших габаритов. Гораздо практичней солнечная батарея из диодов своими руками.
В любом случае попробовать спаять альтернативный источник энергии есть смысл по двум причинам:
- Как минимум, будут пристроены старые радиодетали.
- От него можно запитать электронные часы или даже небольшой радиоприемник.
Панель из светодиодов
Любой светодиод обладает обратимостью: он не только излучает свет под напряжением, но и наоборот — генерирует электричество под воздействием света. Максимальная ЭДС у сверхярких элементов — до 1.65 В, но ток при этом получается очень маленьким — до 20 мкА. Зеленые индикаторные светодиоды с линзой диаметром 3 или 5 мм при освещении выдают почти 1.6 В. Совсем немного уступают им красные и оранжевые светодиоды с линзой 5 мм.
Но изготовить из них солнечную панель, способную работать как эффективное зарядное устройство, не получится из-за крайне маленького тока.
Батарея из диодов
Солнечная батарея из диодов Д223Б действительно может стать источником электрического тока. Эти диоды имеют наибольший вольтаж и выполнены в стеклянном корпусе, покрытом краской. Напряжение на выходе готового изделия можно определить из расчета, что один диод на солнце генерирует 350 мВ.
- Необходимое количество радиодеталей складываем в емкость и заливаем ацетоном или другим растворителем и оставляем на несколько часов.
- Затем, необходимо взять пластину нужного размера из не металлического материала и выполнить разметку под впаивание компонентов источника питания.
- После размокания краску можно легко соскрести.
- Вооружившись мультиметром, на солнце или под лампочкой определяем плюсовой контакт и загибаем его. Диоды впаиваются вертикально, так как в таком положении кристалл лучше всего генерирует электричество из энергии солнца. Поэтому на выходе получим максимальное напряжение, которое будет генерировать солнечная батарея.
Распайка диодов
Есть ли польза?
Когда речь идет о светодиодах, не стоит забывать о таком явлении, как потребление тока самими диодами и их самопроизвольное свечение. Иными словами, в то время, когда часть светодиодов генерирует электричество, остальные будут его потреблять. В итоге, напряжение схемы увеличивается далеко не пропорционально числу задействованных элементов, и в определенный момент «обратные потери» становятся слишком значительными.
Кроме того, нормально работать самодельная батарея из диодов может только в ясную солнечную погоду. В условиях облачности ее выработка стремится к нулю.
В хозяйстве радиоконструктора всегда найдутся старые диоды и транзисторы от ставших ненужными радиоприемников и телевизоров. В умелых руках это — богатство, которому можно найти дельное применение. Например, сделать полупроводниковую солнечную батарею для питания в походных условиях транзисторного радиоприемника.
Ранее мы уже приводили , надеемся, вы заметили. Как известно, при освещении светом полупроводник становится источником электрического тока — фотоэлементом. Этим свойством мы и воспользуемся. Сила тока и электродвижущая сила такого фотоэлемента зависят от материала полупроводника, величины его поверхности и освещенности. Но чтобы превратить диод или транзистор в фотоэлемент, нужно добраться до полупроводникового кристалла, а, говоря точнее, его нужно вскрыть.
Как это сделать, расскажем чуть позже, а пока загляните в таблицу, где приведены параметры самодельных фотоэлементов. Все значения получены при освещении лампой мощностью 60 Вт на расстоянии 170 мм, что примерно соответствует интенсивности солнечного света в погожий осенний день.
Энергия, вырабатываемая одним фотоэлементом, очень мала, поэтому их объединяют в батареи. Чтобы увеличить ток, отдаваемый во внешнюю цепь, одинаковые фотоэлементы соединяют последовательно. Но наилучших результатов можно добиться при смешанном соединении, когда фотобатарею собирают из последовательно соединенных групп, каждая из которых составляется из одинаковых параллельно соединенных элементов.
Предварительно подготовленные группы диодов собирают на пластине из гетинакса, органического стекла или текстолита, например, так, как показано на рисунке 4. Между собой элементы соединяются тонкими лужеными медными проводами. Выводы, подходящие к кристаллу, лучше не паять, так как от высокой температуры можно повредить полупроводниковый кристалл. Пластину с фотоэлементом поместите в прочный корпус с прозрачной верхней крышкой. Оба вывода подпаяйте к разъему — к нему будете подключать шнур от радиоприемника.
Солнечная батарея из 20 диодов КД202
Пять групп по четыре параллельно соединенных фотоэлемента на солнце генерирует напряжение до 2,1 В при токе до 0,8 мА. Этого вполне достаточно для того, чтобы питать радиоприемник на одном-двух транзисторах.
Теперь о том, как превратить диоды и транзисторы в фотоэлементы. Приготовьте тиски, бокорезы, плоскогубцы, острый нож, небольшой молоток, паяльник, оловянно-свинцовый припой ПОС-60, канифоль, пинцет, тестер или микроамперметр на 50-300 мкА и батарейку на 4,5 В. Диоды Д7, Д226, Д237 и другие в похожих корпусах следует разбирать так. Сначала отрежьте бокорезами выводы по линиям А и Б (рис.1).
Смятую при этом трубочку В аккуратно расправьте, чтобы освободить вывод Г. Затем диод зажмите в тисках за фланец. Приложите к сварному шву острый нож и, несильно ударив по тыльной стороне ножа, удалите крышку. Следите за тем, чтобы лезвие ножа не проходило глубоко вовнутрь — иначе можно повредить кристалл. Вывод Д очистите от краски — фотоэлемент готов.
У диодов КД202 (а также Д214, Д215, Д242-Д247) плоскогубцами откусите фланец А (рис.2) и отрежьте вывод Б. Как и в предыдущем случае, расправьте смятую трубку В, освободите гибкий вывод Г.
Все началось с того, что один знакомый, который в молодости был радиолюбителем, мне согласился за символическую цену отдать чемодан с радиодеталями времен Советского Союза. Чемнодан был настоящей наxодкой и когда открыл его, увидел совсем новые стеклодиоды и мощные железные диоды серии кд2010 и кд203. Уверен многие знают, что если осветить полупроводниковый кристалл солнцем, то он способен отдать до 0,7 вольт напряжения. Если кто не в курсе о чем говорю, советую читать статью о зарядке мобильного телефона самодельной диодной . Итак, после небольшего расчета оказалось, что имеющихся диодов более чем достаточно для реализации моей идеи. Один кристалл из диода кд2010 способен дать до 0,7 вольт напряжения, а сила тока одного кристалла может достигать 7 миллиампер (для сравнения скажу, что номинальный ток потребления белого светодиода составляет 20 миллиампер).
В общем от диодной солнечной панели я желал получить номинальное напряжение при нормальном солнечном освещении 9 вольт, напряжение при облачной погоде не менее 6 вольт, а при ярком солнечном освещении планировалось получить до 14-16 вольт напряжения, про силу тока поговорим потом. Итак, поскольку пиковое значение напряжение в 0,7 вольт мои кристаллы отдавали очень редко (в течении 3-х дней испытании на солнце мультиметр только один раз показал такое значение от одного кристалла), то решил для удобства проведения расчетов использовать расчетную величину тока одного кристалла 0,5 вольт. Для получения 12 вольт напряжения нужно последовательно соединить 24 кристалла полупроводниковых диодов. Теперь поясню, как достать кристалл из диода. Берем сам диод и при помощи молотка разбиваем стеклянный держатель верxнего контакта диода. Затем при помощи плоскогубцев нужно открыть диод. Там мы увидим кристалл, который припаян к основании диода. К кристаллу припаян медный многожильный провод на конце которого прикреплен верxний контакт диода. Берем нижнее основание диода на который припаян кристалл и идем к газовой плите. Держим его при помощи плоскогубцев на огне (так, что полупроводниковый кристалл наxодился сверxу). Через пол-минуты олово кристалла расплавится и уже можно спокойно взять его при помощи пинцета. Так нужно делать со всеми диодами. У меня на это ушло пару дней. Работа действительно трудная, но дело стоит того. Как уже было сказано, каждый полупроводный кристалл способен отдавать до 7 миллиампер тока на ярком солнце. Для удобства расчета использовал значение силы тока одного кристалла 5 миллиампер. То есть, если параллельно соединить 32 кристалла мы получим силу тока 160 миллиампер, почему именно 160 миллиампер? Просто у меня диодов xватило как раз только для получения такого тока. Нужно подключить 24 диода последовательно для получения 12 вольт напряжения и собрать 32 блока по 12 вольт и включить параллельно для получения желаемой емкости. В итоге когда панель была готова (после почти недели работ) я почему то получил иные параметры которые меня очень обрадовали. Максимальное напряжение при ярком солнечном освещении до 18 вольт, а сила тока достигала 200 миллиампер, иногда до 220 миллиампер.
Для корпуса панели были использованы два каркаса от советского стабилизатора напряжения. На стабилизаторе есть отверстия для вентиляции и именно в ниx были поставлены полупроводные кристаллы.
Поскольку солнечный свет не всегда будет освещать нашу панель, то было решено зарезервировать напряжение от панели в аккумулятораx. Аккумуляторы были использованы от китайскиx фонариков. Каждый аккумулятор имеет следующие параметры: напряжение 4 вольт, емкость до 1500 миллиампер.
То есть наша панель за сутки успеет зарядить такой аккумулятор, точнее три такиx аккумулятора, поскольку аккумуляторы были включены последовательно для получения 12 вольт напряжения, потом переделал панель и она также при желании могла отдавать 8 вольт 300 миллиампер. Также была изготовлена небольшая панель из стеклодиодов. Стеклодиод при ярком солнечном освещении отдавал напряжение до 0,3 вольт, а сила тока до 0,2 миллиампер.
Стеклодиодная панель у меня дает напряжение 4 вольта, сила тока до 80 миллиампер. Все напряжение от солнечныx панелей накапливалось в свинцовыx аккумулятораx от фонарей, однако желательно использовать аккумулятор с большой емкостью, даже и от автомобиля. Все напряжение от аккумуляторов тратилось с одной целью — осветить дом в ночное время. Освещение выполнялось светодиодами.
Для этого из магазина были куплены фонарики. Затем были созданы светодиодные панельки.
На каждой панельке 42 светодиода. В общей сложности были созданы три идентичные панели которые вместе потребляли всего 20 ватт. Но освещенность равна 100 ваттной лампе накаливания и даже больше.
Свет, которые дают светодиоды, более приятный и успокаивающий. К тому же светодиоды имеют ничтожные тепловые потери.
Ну в прочем думаю все отлично знают, что более эффективны. Все светодиоды были подключены параллельно и питаются от 4-х вольт напряжения, но напряжение нужно подать через токоограничивающий резистор 10 ом — мощность резистора 1 ватт, и нагрева резистора не наблюдалась. Ака.
Обсудить статью МОЩНАЯ САМОДЕЛЬНАЯ СОЛНЕЧНАЯ БАТАРЕЯ
Но то было уже готовое решение.
Сейчас же я расскажу про свой опыт создания светодиодной солнечной батареи своими руками
.
Прошу обратить внимание, что статья обозначена символами ƒ↓
(опыт не удался). Перед началом работы люблю смотреть похожие поделки и оценивать у кого что получилось. Вот тема одного форума , где этот вопрос всплыл раньше, но воплотить в жизнь и сделать развёрнутый обзор эффективности светодиодов никто не взялся.
Лично мне, идея пришла совершенно случайно, также случайно как я попал на чужую пару вольным слушателем. Там рассказывали про светодиоды
и возможность их использования как
фотодиодов
. То есть, другими словами, светодиоды тоже
преобразуют свет в электричество
!
Для начала нужно определить какие светодиоды лучше использовать. Но сейчас не сезон и тестить под прямыми солнечными лучами не получиться, да и не постоянное это солнце. Что же делать? Забить Забыть до лета? Это не подход мозгочинов и всех самодельщиков))
В дело вступает галогеновая лампа, купленная в статье про .
Галогенка выбрана не случайно, а за счет близости к солнечному спектру излучения и большой мощности.
Решил собрать и кое где открутить все светодиоды
, которые были в нашей мозгочинской лаборатории.
Для максимальной точности сравнения все светодиоды подносились перпендикулярно и вплотную к центру лампы
. Но прежде чем заглянуть в таблицу выберите, основываясь на личных знаниях и опыте, — какой светодиод выдаёт большее напряжение? Белый, красный, может инфракрасный?
5 мм | Вольт |
Зеленый непрозрачный светодиод | 1,51 |
Зеленый прозрачный светодиод | 1,48 |
Ультрафиолетовый светодиод | 0,11 |
Инфракрасный светодиод | 0,93 |
Красный прозрачный светодиод | 1,37 |
Оранжевый непрозрачный светодиод | 1,52 |
Красный полупрозрачный светодиод | 0,52 |
Белый светодиод | 0,32 |
3 мм | |
зеленый непрозрачный светодиод | 1,52 |
зеленый непрозрачный с отражателем!!! | 1,57 |
10 мм | |
Красный непрозрачный светодиод | 1,16 |
Кто загадывал зелёный
, тому — зачот!
Поэтому выберем все зелёные индикаторные диоды.
Далее я спаял 9
светодиодов
последовательно
и еще
9 параллельно
, чтобы сравнить эффективность при 2-х видах подключения. Остановился на 3 мм, т.к. они выдают такой же вольтаж, как и
светики
по 5 мм
(ох и бесит меня это слово)
.
Результаты вышли следующими:
При последовательном подключении всего 1,25 V
параллельно 1,56 V. Я ожидал совсем иного. Силу тока измерять не удалось (из за моего мультиметра). Но я и так знаю, что она там ничтожно мала. Интересно, что при последовательном соединении напряжение только уменьшилось. Может это связанно с тем, что светодиоды частично потребляют энергию, которую сами же конвертируют из света!?
В общем слова профессора (с 1 Ф:))) подтвердились и ничего не вышло. Но чтобы убедиться в этом наверняка, я подключил светодиоды к электронному термометру, который питается от 1 полуторовольтовой таблетки. И…. барабанная дробь …
Ничего.(
Epic Fail!
Вывод:
площадь p — n перехода у светодиодов очень мала (по сравнению с солнечной батареей). Например полоска составляет несколько сантиметров.
Здравствуйте Дорогие читатели блога ! В нашем 21-ом веке постоянно происходят какие-либо изменения. Особенно остро они замечаются в технологическом аспекте. Изобретаются более дешёвые источники энергии, повсеместно распространяются различные девайсы, которые должны упростить жизнь людям. Сегодня мы поговорим о такой вещи как солнечная батарея – устройство не прорывное но, тем не менее, которое с каждым годом всё больше и больше входит в жизнь людей. Мы поговорим о том, что представляет собой данное устройство, какими преимуществами и недостатками она обладает. Также уделим внимание тому, как собирается солнечная батарея своими руками.
Краткое содержание данной статьи:
Батарея из фольги
Помимо описанных выше двух способов источник питания можно собрать из фольги. Самодельная солнечная батарея, сделанная согласно пошаговой инструкции, описанной ниже, сможет давать электроэнергию, хотя и очень малой мощности:
- Для самоделки понадобится медная фольга площадью 45 кв. см. Отрезанный кусок обрабатывается в мыльном растворе для удаления жира с поверхности. Так же желательно вымыть руки, чтобы не оставлять жировые пятна.
- Наждаком необходимо удалить защитную оксидную пленку и любой другой вид коррозии с плоскости отреза.
- На горелку электрической плитки мощностью не меньше 1,1 кВт ложится лист фольги и нагревается до образования красно-оранжевых пятен. При дальнейшем нагреве образовавшиеся окислы превращаются в оксид меди. Этому свидетельствует черный цвет поверхности куска.
- После образования оксида нагрев необходимо продолжать в течение 30 минут, чтобы образовалась оксидная пленка достаточной толщины.
- Прожарка останавливается, и лист остывает вместе с печкой. При медленном охлаждении медь и оксид остывают с разной скоростью, что способствует последнему легко отслоиться.
- Под проточной водой удаляются остатки оксида. При этом нельзя сгибать лист и механически отдирать мелкие кусочки, чтобы не повредить тонкий слой окиси.
- Вырезается второй лист по размерам первого.
- В пластиковый бутыль объемом 2–5 литров с обрезанным горлом нужно поместить два куска фольги. Закрепить их зажимами «крокодил». Располагать их надо, чтобы они не соединялись.
- К обработанному куску подводится минусовая клемма, а ко второму — плюсовая.
- В банку заливается солевой раствор. Его уровень должен быть ниже верхней кромки электродов на 2,5 см. Для приготовления смеси 2–4 столовые ложки соли (в зависимости от объема бутылки) растворяются в небольшом количестве воды.
Батарея из фольги
Все солнечные батареи не пригодны для обеспечения дачи или частного дома помещения электричеством в виду своей маломощности. Но они способны служить источником питания для радиоприемников или зарядки мелких электроприборов.
Недостатки солнечных батарей
Теперь, когда панели своими руками стали еще доступнее, не все владельцы жилья стремятся обзавестись таким альтернативным источником электроэнергии. И для этого есть свои причины:
- мощная и эффективная система требует большой площади, которая будет полностью открыта для прямого попадания солнечных лучей;
- чтобы перекрыть все потребности в получаемой солнечной энергии нужно, чтобы гелиосистема была оснащена достаточно большим количеством панелей. Отсюда вытекает другая проблема — для размещения большого количества фотоэлементов нужны и большие площади, открытые для прямого солнечного излучения;
- для нормального функционирования системы необходимо подобрать аккумуляторы, которые будут соответствовать мощностям гелиосистемы;
- так как система совершенно малоэффективна в сумеречное время и абсолютно не работает ночью — необходимо дополнить ее аккумуляторами. Они накапливают энергию днем и отдают вечером или ночью;
- так как аккумулятор для солнечных панелей будет, скорее всего, не один, а несколько, для них нужно отдельное помещение, которое к тому же должно отвечать всем нормам безопасности;
- пока система новая, она будет работать с максимальной отдачей. Но погодные факторы — пыль, снег, дождь неизбежно будут снижать эффективность системы. Значит, все элементы нуждаются в периодической очистке, а для этого к ним должен быть удобный доступ;
- на сегодня самые эффективные системы, которые собраны из пленочных фотоэлементов из тонких полимеров на основе теллурида кадмия. Но применение таких дорогостоящих компонентов в самодельных домашних системах абсолютно не рентабельно.
Утилизация системы
Солнечные системы, собранные на производстве, рассчитаны на 45–летний срок использования. Их составляющие — контроллер и инвертор служат около 20 лет. Срок жизни аккумуляторов также весьма ограничен, но точно не превышает десяти лет.
Поэтому возникает закономерный вопрос — что делать с отработавшими свой ресурс элементами гелиосистемы?
Ответ очевиден — продать!
Можно не сомневаться, что и в вашем городе найдётся компания готовая выкупить эти компоненты.
Они вполне пригодны для повторного применения, чтобы создавать аналогичные системы. Цена природного кремния весьма высока, как и его переработка. Выгоднее выкупить отслужившие свой срок элементы, переработать их и пустить в повторное производство солнечных панелей. Это намного прибыльнее, чем покупать сырье или самому добывать редкоземельные материалы.
Где купить
Приобрести солнечные панели можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых панелей есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»:
Мини солнечная панель с напряжением от 2 до 12 Вольт | Гибкая солнечная панель на 100 Ватт 12 Вольт | Набор гибких солнечных панелей на 300 Ватт |
Портативная солнечная панель Dokio, 18 В, 200 Вт | Светильник со встроенным питанием от солнечной панели | Поликристаллическая солнечная панель на 40 Ватт, 18 Вольт |