Переделка фонариков на литиевые аккумуляторы. Переделка налобного фонаря на батарейкам в аккумуляторный Переделка фонарика космос под аккумуляторы 18650


30.04.2021

На плохоньких 5 мм светодиодах под литиевый аккумулятор 18650. Тут платка снята, а взамен сделана самодельная на новых оригинальных (кристалл довольно большой) светодиодах 2835 1 Вт 350 мА (для подсветки мониторов), у них подложка плюсовая. Но можно применить и обычные 2835, изменив полюсовку на стандартную. На Али они стоят по 3 цента.

При установке новой платы нужно сточить столбик крепления вровень с чашками отражателей, чем больше стачиваем — тем лучше получается фокус в центре без затемнения. ЗУ применено на 5 В 500 мА в узких корпусах, установлен вверху под аккумулятором (вниз деталями), плата с выводами прикрыта толстой плёнкой — подложкой от БП АТХ и сверху приклеен на молекулярку аккумулятор.

В качестве драйвера установлена микросхема АМС7135 на 3,2 В 350 мА, на 5 светодиодов приходится по 70 мА, что не даёт им нагреться при хорошей светоотдаче. Получился вполне добротный и долговечный фонарик, который теперь прослужит очень долго.

Переделка фонарика на Li-Ion 18650

Очередной более современный фонарик с зарядкой от сети, внутренности заменены на аккумуляторы 18650 и зарядку от USB на 5 В.

Светодиоды 7 штук заменены на более качественные 5 мм типа «шляпа» и с более ярким свечением. Но поскольку у фонарика было два режима, решил на будущее переделать плату под два вида светодиодов, 6 штук на 5 мм по кругу и центральный мощный CREE светодиод или на 1 Вт, он туда на подложке вписывается в самый раз. В таком виде получается рассеянный свет и свет пучком.

Драйвер стандартный на LM358, ток центрального светодиода выбран в пределах 120 мА, чего вполне хватит для освещения и практически не греет подложку. Нагрев подложки светодиода будет начинаться от 150 мА, но если применить двусторонний стеклотекстолит, то можно вторую сторону использовать как небольшой радиатор, правда это всё же лишнее, поскольку световой поток будет лишь чуть ярче, а вот греться подложка светодиода станет довольно сильно.

Собрал, проверил, всё чётко подошло под отражатель, светит довольно ярко. Свет получился холодным белым от 5 мм светодиодов и немного тёплым белым от CREE.

Переделка фонарика А420

Переделка фонаря «А420» с ЛДС на светодиоды. Друг попросил посмотреть фонарь, можно ли что из него толкового сделать, так как с ЛДС лампой он быстро съедает батарейки, а выкидывать её жалко.

Посмотрел, подумал, питание идёт от 4х батареек 1,5 В, можно сделать фонарь на 1 — 4 аккумулятора 26650, но это лишь частично решает проблему, на светодиодах от фонаря было бы больше толку. Решено было оставить батарейки, но переделать фонарь на LED.

За световую основу были взяты китайские копеечные светодиоды 2835 на 3-3,6 В 60 мА, суммарный ток был рассчитан на 640 мА, дабы не перегревать кристалл. Света с ними вполне хватает, но если нужно ярче — можно поставить более яркие светодиоды, а на драйвере резистор R2 заменить на переменный, будет дополнительная регулировка яркости.

Была скопирована печатная плата и переделана под понравившийся драйвер на LM358, стойки светодиодной матрицы под контакты платки взяты из старой платы монитора, подошли идеально. Чуть позже плату дополнил ЗУ на ТР4056, разъём питания можно установить на крышке, теперь в фонарь так же можно поставить любые подходящие аккумуляторы прикрутив клеммы прямо к стойкам.

Основные выводы

Для создания своими руками светодиодного фонаря понадобится приготовить набор элементов, из которых основными являются:

  • аккумулятор на 3,7 В;
  • микромодуль зарядки;
  • колпачок с линзой и светодиод.

Порядок сборки не представляет существенной сложности. Понадобится хотя бы начальный навык владения паяльником и прочими инструментами. В результате получается вполне качественный и эффективный светодиодный фонарик. Свои уточнения и варианты излагайте в комментариях.

Предыдущая

СветодиодыХарактеристики, особенности и настройка светодиодных ЖКХ светильников с датчиком движения

Следующая

СветодиодыВолшебный неон — как самостоятельно выбрать и подключить светодиодный шнур

Переделка фонарика Т-50А

Переделан также фонарь модели Т-50А.

После теста на продолжительность работы фонаря от встроенного аккумулятора 26650 5А, через некоторое время заморгали светодиоды. Думал перегрев, но в отдельности от драйвера они светили замечательно и не сильно грелись. Проблемной оказалась китайская ОУ LM358, купленная когда-то партией, при замене на оригинальную проблема с морганием пропала.

Обсудить статью ПЕРЕДЕЛКА ФОНАРИКА ПОД 18650 АКБ

В современное время все больше техники, в роли элементов питания используют литий-ионные аккумуляторы. Они не имеют «эффекта памяти», в отличие от Ni-Cd. Могут отдавать большой ток.

Я решил переделать два старых фонарика под литий-ионные аккумуляторы 18650, благо у меня их большое количество. Да и достать их не составляет труда в ремонтных фирмах, занимающихся ремонтом ноутбуков.

Для переделки нам понадобится некоторое количество комплектующих:

— собственно фонарики; — ; — ; — оргстекло; — кусок тонкого пластика; — ; — провода, термоклей, инструменты.

Фонари удобного размера для установки в них аккумуляторов 18650, в количестве двух штук. В принципе можно описать доработку одного фонарика.

Платы контроллеров заряда у меня разные. На одной Mini-USB, на второй Micro-USB. Данные платы можно приобрести в Китае за 15-20 рублей за единицу. Так же продаются в магазинах радиотоваров и радио рынках. У меня платы без защиты (BMS), но с этим справимся.

Разбираем фонарики и вынимаем все из них, кроме переключателей, светодиодов.

Теперь берем тонкий пластик, у меня это ABS от старого аккумулятора. Получилось что он черного цвета, но не страшно, на синем фонарике тоже будет смотреться отлично.

Вырезаем окошки так, чтоб плотно входили в место, где раньше выдвигалась вилка для заряда.

Вырезаем нужного размера под окошко и отверстия под разъемы наших плат заряда. Клеить их не обязательно, они должны плотно входить и я их потом укреплю.

Так как наши платы не имеют защиты от разряда, применяемы в данной ситуации платы из аккумуляторов мобильного телефона. Можно и купить с защитой, но у меня таких сейчас нет в наличии. Поэтому прибегаю к чуть трудоемкому решению.

Распаиваем провода от наших BMS к аккумуляторам. Платы контроллеров заряда ставим на место и подпираем. В роли распорки применил отрезки винной пробки. Все укрепляем термоклеем, но можно и без него.

Распаиваем выключатели, у меня выключатели разрывают плюс. На черном фонарике есть плата со светодиодом. Переключатель имеет два включенных положения, одно из которых я завел на одиночный светодиод, а второе положение включает основные светодиоды. На синем фонарике одно положение выключателя.

Собираем фонарики и подпаиваем отражатели и переходим к следующему этапу.

Следующим этапом, вырезаем две пластинки из прозрачного пластика, у меня это пластик из коробки компакт-диска. Шкурим наждачной бумагой до матовости поверхности, так приятней свет от светодиода.

Приклеиваем на место, где раньше находился движок, которым выдвигалась сетевая вилка. Клеить нужно на одну половину фонарика. Вдруг нужно будет разобрать фонарик.

Обзор аккумуляторов 18650 для разных устройств, переделка батареи на шуруповерт, лучшие аккумуляторы с АлиЭкспресс

ТЕСТ:

Чтобы понять, обладаете ли вы достаточной информацией о литий-ионном аккумуляторе:

  1. При приобретении батарей 18650 для фонаря с защитой, какой производитель предпочтительнее?
  1. Какие показатели должны давать зарядные устройства для 18650?

а) На выходе 5 Вольт и ток от 0,5 до 1 от номинальной емкости самой батареи. б) На выходе 10 Вольт и ток от 1 до 3 от номинальной емкости самой батареи.

  1. В каком температурном диапазоне желательно хранить батарею?

а) + 10 — + 25 – идеальные показатели. Аккумулятор не переносит слишком холодных или жарких помещений. б) При температуре +20 — +45 градусов.

  1. Через сколько этапов проходит зарядка литиевой батареи?

а) Два. б) Четыре.

  1. Сколько этапов зарядки у литиевой батареи, что заряжается меньше часа?

Ответы:

  1. б) Желательно брать китайские батареи KEEPPOWER. Samsung не выпускает модели с защитой.
  2. а) Верные показатели на выходе — 5 Вольт и ток от 0,5 до 1 от номинальной емкости самой батареи.
  3. а) + 10 — + 25 – идеальные показатели. Нельзя помещать батарею в иные условия.
  4. а) Два этапа – сначала с напряжением в 0,2-1А, а после с высоким постоянным.
  5. а) Только один. На элемент сразу подается высокое напряжение. Остальные этапы отсутствуют.

Проблема никель-кадмиевого аккумулятора,

установленного в шуруповерте, в том, что его нужно постоянно использовать. Если батарея полностью разрядится или долго не используется, то в ней начнется процесс кристаллизации, и аккумулятор вскоре вовсе выйдет из строя.

На замену аккумулятора

придется потратить много денег, поскольку батареи, подходящие для шуруповерта, стоят недешево.

По этим причинам владельцы шуруповёртов немного переделывают аккумулятор, чтобы подключить к нему литиевые элементы. Но перед началом проведения подобных работ нужно подумать, нужно ли совершать такую переделку и целесообразно ли она вообще.

Определение:
Батарея
18650 – это аккумулятор, дающий мощность в 3,7В.

Какие светодиоды используют в мощных фонариках?

Под мощными фонарями подразумеваются современные фонари различных типов начиная от тех, что размером с палец, заканчивая огромными поисковыми фонарями.

В такой продукции в 2022 году актуальна марка Cree. Это название американской компании. Её продукция считается одной из наиболее передовых в области светодиодной техники. Альтернативой являются LED от производителя Luminus.

Такие вещи значительно превосходят светодиоды с китайских фонариков.

Какие светодиоды Cree в фонариках устанавливаются наиболее часто?

Модели носят название состоящие из трёх четырёх символов, разделённых дефисом. Так диоды Cree XR-E, XR-G, XM-L, XP-E. Модели XP-E2, G2 чаще всего используются для небольших фонариков, а XM-L и L2 – очень универсальные.

Их используют, начиная от т.н. EDC фонарей (для повседневного ношения) – это маленькие фонари размером меньше ладони, до серьёзных поисковых фонарей большого размера.

Давайте рассмотрим характеристики мощных светодиодов для фонариков.

НазваниеCree XM-L T6Cree XM-L2Cree XP-G2Cree XR-E
Фото
U, В2,92,852,83,3
I, мА700700350350
P, Вт2211
Рабочая температура, °CРемонт фонариков

К сожалению цена таких фонариков довольно большая, как и самих диодов. И не всегда есть возможность приобрести новый фонарь, в случае поломки. Давайте разберемся как поменять светодиод в фонарике.

Для ремонта фонарика необходим минимальный набор инструментов:

Чтобы добраться до источника света нужно отвинтить головную часть фонаря, она обычно закреплена на резьбовом соединении.

Еще важно знать 3 нюанса до начала работы

  1. Для начала нужно определиться с количеством элементов в батарее.
    Лучше всего использовать 4 элемента, поскольку три дадут всего лишь 12,6 Вольта.
  2. Собирая аккумулятор 18650,
    необходимо обращать внимание на ёмкость и разрядный ток. При работе батареи потребляемой ток находится в диапазоне 5 или 10 ампер, но если резко нажать на кнопку включения, то он может подскочить и до 25. Это говорит о том, что максимальное значение разрядного тока должна составлять примерно 30 ампер на аккумуляторе
    18650.
  3. Также следует обращать внимание на контроллер. Его характеристики должны равняться номинальному напряжению и току
    разряда. Для батареи 14,4 В, контроллер это оптимальное напряжение. Рабочий ток должен быть в несколько раз меньше, чем предельно допустимый.

Зарядки для аккумуляторов 18650

Для аккумулятора

18650 придется использовать правильную зарядку. На выходе она будет выдавать 5 Вольт и ток от 0,5 до 1 от номинальной емкости самой батареи. Если литиевые элементы поддерживают 2600 мАч, то для его зарядки следует использовать ток 1,3-2,6 ампера.

Устройство для литиевых батарей

заряжают аккумулятор в несколько этапов:

  1. Сначала на аккумулятор
    подается напряжение в 0,2-1А.
  2. Далее зарядка
    уже проходит при постоянном напряжении.

Если в зарядном устройстве предусмотрен импульсный

режим, то это значительно ускорит время зарядки.

В том случае, если в аккумуляторе стоит графит,

то напряжение не должно превышать 4,3 Вольт на один элемент. Если превысить этот показатель, то энергетическая плотность увеличится, и пойдет окислительный процесс.

Существуют литиевые батареи,

заряжающиеся меньше часа. Второй этап у них не предусмотрен – ток сразу подается на 80% и после этого пускается в работу. Для аккумулятора литиевого типа это нормально.

Ответы на 5 часто задаваемых вопросов о выборе батареи для электронных сигарет

Батарея

Посмотрите на картинке аккумулятор

18650 на электронную сигарету. Довольно сложно подобрать правильный образец АКБ на электронную сигарету, поскольку есть много разновидностей с разной степенью мощности. К примеру,
долгоработающие,
но на полную мощность их включать нельзя. Другие же не нагреются даже при 40 амперах, но они требуют частой подзарядки. При подборе аккумулятора на электросигарету люди задаются вопросом о критериях.

Есть пять основных критериев: Большая энергоемкость,

показатель номинального тока, напряжение при использовании, температура при использовании, стоимость. Нет смысла обращать внимание на остальные нюансы, наподобие цвета сигареты. Все это вторично. Чтобы подобрать хороший агрегат, следует подробно изучить все критерии. В результате покупатель получит всю необходимую информацию для хорошей покупки.
Энергоемкость
Электронная сигарета

Энергоемкость

обозначается в миллиамперах в час. Соответственно, чем этот показатель выше, тем лучше будет модель. От показателя номинального тока зависит безопасность. Напрашивается вывод, что желательно покупать аккумуляторы с самым большим показателем подачи тока. К примеру, батарейка LG hb6 имеет 30 А, а значит она подойдет и для 40 А. Но совершив такую покупку, человек предпочтет большое напряжение и пожертвует энергоёмкостью. Энергоемкость вышеуказанной батареи всего 1500 мАч. Потому заряд она будет держать меньше, чем варианты с 3000 мАч.

Необходимо выбирать показатели номинального тока,

которые не перегреют устройство, но не стоит жертвовать временем работы аккумулятора. Лучше приобрести модель LG HD2, имеющую показатель 25 А и микроампер в час. Это будет средний показатель. Что касается напряжения, то не следует ориентироваться при выборе на этот нюанс – если у сигареты два предыдущих показателя хорошие, то и напряжение будет достаточным.

Какой аккумулятор лучше для led фонаря.тесты зарядок фонарей.

Также нужно выбирать устройства,

имеющие низкую степень нагрева. Перегрев электросигареты скоро повредит весь механизм. Именно поэтому аккумулятор нужно брать такой, который будет работать на самых низких температурах. Стоимость
сигарет
примерно одинаковая и это не самый важный критерий. Желательно отталкиваться в первую очередь от показателей.

Топ 3 лучших зарядных устройств для аккумуляторов

Nightcore digicharger D4

Зарядное устройство

может питать четыре аккумулятора. Это уже зарекомендовавший себя бренд, полюбившийся многим обладателям литиевых батарей.

Устройство

оснащается удобным дисплеем — можно изучить различные данные, в том числе скорость и время зарядки, напряжение на каждом элементе. Состояние аккумулятора очень удобно наблюдать на таком дисплее.

Это универсальная зарядка,

предназначена не только для модели 18650. D4 нужно использовать людям, имеющим большое количество мобильных устройств, в которые помещаются несколько разновидностей аккумуляторных батарей.

Новички быстро освоят работу, поскольку зарядка происходит в автоматическом режиме.

Efest luc Blu6 oled Bluetooth intelligent Charger

Это также очень хорошая модель зарядного устройства,

рассчитанная на 6 аккумуляторов. Чтобы безопасно производить зарядку, в устройство устанавливается специальная защита от высокого тока, напряжения и так далее.

Пользователь получает возможность соединить свой мобильный телефон с зарядкой через Bluetooth

— можно дистанционно наблюдать за уровнем заряда батареи. Единственный недостаток зарядки — высокая цена.

Nightcore i2 intellicharger

Зарядка

поступила в продажу недавно. Это современный вид устройства, оснащённый интересными возможностями и улучшенным дизайном.

Пользователям не нужно беспокоиться о скорости и времени зарядки,

поскольку устройство определяет всё в автоматическом режиме. От человека необходимо только установить батарею на положенное место.

На устройстве есть место только для двух аккумуляторов, но зарядка при этом очень компактная, и ее можно брать с собой в путешествие.

Литий-ионный аккумулятор 18650 для фонаря

  1. Литий-ионные аккумуляторы
    работают в диапазоне 4,35 — 4,2 Вольт. Их часто используют для работоспособности светодиодных фонарей.
  2. Нужно следить, чтобы аккумулятор
    не разряжался ниже установленного уровня — 2 вольта. Чтобы постоянно не следить за необходимым напряжением, нужно использовать
    аккумулятор
    для фонаря с защитой. Они хранят элементы от перезаряда или глубокого разрежения.

Компании

Samsung, Panasonic, LG и Sony не выпускают такое оборудование. Для этой цели лучше приобрести китайский аппарат KEEPPOWER.

Необходимые детали

Для сборки светодиодного фонаря своими руками понадобятся:

  • корпус будет изготовлен из пластикового шприца емкостью 20 мл;
  • трехваттный светодиод с напряжением питания 3,4 В;
  • рассеивающая линза;
  • кнопка выключения (микро);
  • токоограничительный резистор на 3 Ом мощностью 0,25 Вт;
  • для зарядки аккумулятора будет использован микромодуль ТР4056;
  • алюминиевая пластинка для изготовления радиатора;
  • соединительные провода (медные);
  • аккумулятор на 3,7 В;
  • двусторонний скотч;
  • суперклей, клеевой пистолет, эпоксидный компаунд или состав «жидкие гвозди».

Лучшие аккумуляторные батареи 18650 на АлиЭкспресс по отзывам

  1. Rechargeable Battery
  2. Samsung icr18650
  3. Rechargeable flat Top Battery

Идеальные условия для батареи

– температура +10 — +25 градусов.

Идея о том, как переделать налобный фонарь в аккумуляторный возникла давно, особенно это актуально на рыбалке и при . Поскольку постоянно покупать батарейки невыгодно, в наш век мобильных телефонов. Вот поразмыслив и заказал нужные запчасти, о которых опишу ниже приступил к доработке налобного фонарика под аккумуляторы своими руками, используя китайскую схему с под зарядкой.Что делает возможным заряжать батарею и в автомобиле и от обычного микро USB современного телефона. Я заказываю обычно на Алиэкспрес хотя возможно найти и в магазинах но в 2 раза дороже.

Очень яркий и функциональный налобный фонарик, за такую стоимость но почему то сейчас не нашел такой в продаже Пробовал переделывать и такую модель, немного не удобно с монтажом кнопки и диодная пластина нагревается, пришлось изолировать от батареи кусочком пластика. Но в итоге фонарик исправно работает

Фонарик доставили на почту за 20 дней что порадовало:) .

Идея очень проста и под силу каждому, для этого потребуется лишь небольшая батарейка от старого сотового телефона, там установлен Li-Ion аккумулятор с защитой. По параметрам напряжения подходит идеально, светодиодный фонарик имеет диапазон по напряжению от 4,5 – 2В, а батарея 3,7В в заряженном состоянии 4,2В при этом имеет приличную емкость, которую можно увеличить, добавив параллельно еще одну батарею. Нужно только правильно определить контакты (на большинстве указаны плюс и минус) остается аккуратно подпаять контакты, чтоб не расплавить и избежать замыкания. Проблема с зарядкой через обычный микро юсби решается просто, заказать маленькую плату стоимостью порядка 20 руб. Micro USB выполняет очень важную роль по контролю за зарядкой и отключением лед лампы при разрядке батареи.

В плате установлены светодиодные индикаторы, которые показывают цветом когда переделанный светодиодный фонарик зарядится. Таким образом доработка налобного китайского фонаря сводится к припайке проводков клемам. Использую эту плату переделка любого фонарика на литий довольно просто, важно только знать, сколько вольт выдает батарея.

Плата для зарядки, приобреталась в интернет магазине с бесплатной доставкой

Возможно для себя заказал сразу 10 штук поскольку она универсальна и можно использовать в детских игрушках.

Схема соединения батарей

Полезная видео подборка по доработке фонарей

Подбор и приобретение карманного фонарика – занятие непростое и нудное. По крайней мере, для меня. Подхожу к этому делу со всей дотошностью и ответственностью. Необходимо учесть все достоинства и недочёты изделия. Тип и ёмкость элементов питания, параметры, вес, степень водонепроницаемости и многое другое. Чтобы он не подвёл в самый неподходящий момент. Хотел приобрести маленький карманный фонарик, водонепроницаемый, работающий на одном аккумуляторе 18650. Однако, желаемого товара не нашёл в местных магазинах. Подумывал уже было заказать в интернет-магазине и, подождав 2-4 недели, получить требуемое… Но неожиданно наткнулся на почти подходящую мне вещь. Почти. Фонарик имел нужные мне размеры, и все необходимые качества, но было одно «но» – работал он от трёх аккумуляторов типа ААА (мизинчиковые).

Имея в рюкзаке специальный контейнер с четырьмя постоянно заряженными аккумуляторами 18650, я категорически не желаю пользоваться другими элементами питания. Тем более такими маленькими и не ёмкими, как мизинчиковые. Но выход есть всегда! Осмотрев в магазине этот фонарик, схема модификации созрела тут же, и я, недолго думая, приобрёл его, с целью переделать на свой лад в ближайшее свободное время.

Параметры платы

  • Входное напряжение с Micro USB: 5 В
  • Зарядка напряжение отсечки: 4.2 В ± 1%
  • Максимальный ток зарядки: 1000mA
  • Аккумулятор в течение разряда защита от перенапряжения: 2.5 В
  • Установлена защита от перегрузки по току ток: 3A
  • Размер платы: 2.6*1.7 СМ

По факту, это отдельная плата которая используется в павербанке и если докупить usb выход то можно и заряжать телефон

Приступим к переделке

Разобранный вид фонаря и первый этап сборки
Теперь, про сама переделка фонарика под аккумулятор вместо батареек, большинстве фонарей используют 3 АА по 1,5в по размеру, сопоставим с мобильной батарейкой, и вполне помещается в основном корпусе, только придется расширить посадочное место. После несложных манипуляций выкрутив или вырезав все лишнее, монтируем на термоклей все детали по местам.

Схема переделки светодиодного фонаря Припаять все детали по местам с помощью термопистолета Если нужно, то можно увеличить емкость соединив 2 батареи Получаем модернизированный налобный фонарик с мини юсби входом

В заключение: светодиодный фонарь проработал активно 3 ночи на старых телефонных батарейках без подзарядки. Возможно и на больше бы хватило, до отсечки не испытывал. Литиевые батарейки не любят полной разрядки. В целом очень доволен по себестоимости в 140 руб. единственное, он очень яркий что не всегда нужно. Порадовало наличие индикаторов заряда на плате. При зарядке по usb светится красным когда батарея заряжена синим.

Таким способом можно переделать практический любой фонарик, вопрос только в размере батарейки. Например батарейки с Айфона неочень практичны и если оторвать контакты с платы подключения неаккуратно то они еще и не паяются.

Не используйте литиевые батарейки если они вздулись- это небезопасно!

Бывает такое, что на плате срабатывает защита, а вам нужно его оживить, в таком случае подайте напряжение с блока питания или павербанка. Если телефонные батарейки совсем старые, то налобном фонарик естественно быстрей сработает защита и он погаснет. Хотя батарейкам из старой Нокии (более 4 лет) исправно работают.

Экономить деньги при покупке и соответственно купить дешевле вполне (это когда % с покупки накапливаются). Так просто устанавливаете расширение для браузера и деньги постепенно сама копятся.

Фонарь «Волшебная лампа»

Это рассказ о переделке светодиодного фонаря. Нетрадиционная изюминка присутствует — применены теплые ламповые аналоговые решения! Несколько лет назад, когда светодиодные фонари только начали появляться в магазинах, я купил в Окее светодиодный фонарь «Диггер». Большой, с рукояткой пистолетного типа, удобно лежащий в руке, сбалансированный. Он имел один светодиод 3 вт, свинцовую батарею и по описанию мог стоять на подзарядке без ограничений. Это было то, что надо на даче. Как мы все знаем, несмотря на 21 век и космические корабли, бороздящие просторы Космоса (С) – на удалении более 30 км от Москвы энергоснабжение становится ненадежным. Энергосети отключают электричество при любом удобном случае – в дождь, грозу, жару и просто так. Обычно в субботу-воскресение на часок-другой днем электричество отключают. Наверно для тренировки населения на выживание в любых условиях.

Поэтому наличие мощного, удобного фонаря, постоянно заряженного и готового к работе – практично.

К сожалению, свинцовые аккумуляторы обладают ограниченным сроком службы около трех лет, особенно в дежурном режиме с постоянной капельной подзарядкой. Не стал исключением и мой фонарь, в какой-то момент я обнаружил, что аккумулятор заряд не держит, а через короткое время и напряжение упало ниже порога работы светодиода.

Можно конечно было пойти в любой магазин радиодеталей и купить аккумулятор на замену. Но беглое изучение цен на такие аккумуляторы не вызвало у меня никакого энтузиазма. Обдумав вопрос, я решил, что в таком фонаре разумно использовать литиевые аккумуляторы типа 18650, оставшиеся от замены элементов в аккумуляторе древнего (более 10 лет) ноута Compaq NC6220, ценного наличием аппаратного сериал порта.

Промер шести старых элементов показал, что четыре элемента вполне пригодны, один – так себе и один годится только на выброс. Четыре элемента 18650, собранные в батарею с параллельным включением по размеру были как старая свинцовая батарея. Удивило, что литиевые элементы из старой десятилетней батареи все еще обладают емкостью около 1500 мАч при начальной 2200.

Если уж заниматься переделкой фонаря на другой тип аккумуляторов, что автоматически означает смену платы управления, то можно и пофантазировать. Корпус большой, разместить можно много. Лично мне пришла в голову мысль, что управлять яркостью фонаря будет правильно переменным резистором. На рис. 1 показан способ плавного управления яркостью светодиодного фонаря переменным резистором.

Рис. 1. Способ плавного управления яркостью светодиодного фонаря переменным резистором.

Для замены свинцовой батареи я изготовил держатель для четырех элементов 18650:

Элементы 18650 размещены на прямоугольном основании из фольгированного стеклотекстолита, в котором Дремелем вырезаны пазы толщиной 1.5 мм для контактных держателей из пружинистой бронзы. Все детали соединены пайкой, использовался паяльник made in USSR мощностью 200 ватт. На держатели напаяны контакты из припоя, толщина контактов подогнана так, чтобы 18650 держались плотно, с усилием. Блок батарей крепится к верхней части корпуса через две пластиковых изоляционных стойки. Стойки имеют штырь с наружной резьбой М3 на одном конце и углубление с внутренней резьбой М3 на другом конце. Пластиковой гайкой стойка закреплена в отверстии на основании аккумуляторной сборки, а вся сборка привинчена болтом М3 через верхнюю часть корпуса. Конструкция разборная, позволяет открутить два винта М3 и вынуть целиком блок аккумуляторов. Элементы 18650 вынимаются из держателей без применения инструмента.

Напрямую от литиевого источника светодиод питать нельзя. Светодиод питается стабилизированным током 700 мА, при этом падение напряжения на нем составляет около 3,7 вольт. Литиевая батарея в полностью заряженном состоянии дает напряжение 4.2 вольта, а в разряженном 2.7 вольта. Источник тока для светодиода должен уметь работать в указанном диапазоне входных напряжений (2.7 — 4.2 вольт), обеспечивая стабильный ток 700 мА в светодиоде. Понятно, что это должен быть импульсный преобразователь, способный работать в режиме как понижения напряжения, так и повышения. Такие преобразователи называются BUCK-BOOST и на рынке имеется некоторый выбор микросхем для построения преобразователей.

Раз я решил управлять яркостью диода переменным резистором – надо преобразовать угол поворота ручки в сигнал управления яркостью. Для управления яркостью требуется ШИМ сигнал, скважность (коэффициент заполнения) которого и будет определять интегральную яркость светодиода. Плавно меняя скважность можно плавно менять яркость. Одновременно будет уменьшается потребляемая мощность, продлевая работу фонаря. В существующих фонарях режимы диммирования включаются последовательными нажатиями на кнопку (обычно кнопку питания, иногда – на отдельную кнопку). Мне такой способ кажется неэргономичным, неудобным. Я приверженец олдскульного аналогового стиля управления плавно меняющимися параметрами круглой ручкой, которую можно поворачивать в обе стороны. Поэтому оптимальным в данном случае представляется переменный резистор, ручкой которого можно управлять большим пальцем руки. Есть переменные резисторы с выключателем, который можно дополнительно использовать для коммутации питания фонаря. Если последовательно включить штатную кнопку и выключатель на резисторе, то получится новое качество – можно включать фонарь поворачивая ручку резистора, при этом яркость будет плавно нарастать от режима MOONLIGHT до максимального. Или можно поставить ручку резистора в нужное положение и включать выключать фонарь кнопкой на рукоятке, получая каждый раз предустановленную яркость. Положение риски на ручке переменного резистора однозначно определяет яркость фонаря и ее можно установить до включения. С одной кнопкой никогда не знаешь, в каком режиме фонарь включится. Да, я читал описания стандартных фонарей и знаю, что там пишут «фонарь должен включиться в тот же режим». Но все мои фонари такого типа включаются в случайный режим.

Мне было интересно сделать преобразователь, который был бы максимально экономичен, имел бы возможность диммирования светодиода, умел бы отключаться при понижении напряжения литиевого аккумулятора ниже 2.7 вольта. К сожалению, жизнь устроена так: «хочу дешево, хорошо и быстро – конечно, выберите два из трех!». Мне не удалось найти недорогую микросхему, которая была одновременно экономичной, умела повышать и понижать напряжение и могла бы диммироваться от переменного резистора. В результате рассмотрения вариантов я выбрал микросхему NCP5030. Она недорога (~65 р), имеет режим BUCK-BOOST и достаточно экономична, т.е. потери на преобразование невелики.

Параметры микросхемы:

• Экономичность 87% при токе нагрузки 500 мА и входном напряжении 3.3 в • Внутренний синхронный выпрямитель • Максимальный ток в нагрузку – 900 мА • 0.3 мкА ток потребления в выключенном состоянии • Диапазон входного напряжения 2,7 – 5,5 вольт • 200 мВ напряжения обратной связи для стабилизации выходного тока • Защита от превышения выходного напряжения и перегрева. • Автоматический переход между режимами BUCK и BOOST

Частота преобразования фиксирована и составляет 700 кгц. Такая достаточно высокая частота преобразования с одной стороны позволяет использовать индуктивности небольшого номинала, но с другой – требует тщательного выполнения монтажа и использования правильных деталей по мануалу для предотвращения паразитной генерации.

Встроенный синхронный выпрямитель на полевых транзисторах с низким сопротивлением канала в открытом состоянии (падение напряжения около 0.1 вольта) позволяет заметно увеличить КПД по сравнению с выпрямителем даже на диодах Шоттки (падение напряжения на диоде Шоттки – 0.5 вольта).

Очень ценным свойством микросхемы NCP5030 является автоматическое переключение между режимами понижения и повышения входного напряжения. Напряжение на аккумуляторе меняется от 4.2 до 2.7 вольта, а на светодиоде должно быть около 3.7 вольта. Это значит, что по мере разряда аккумулятора надо сначала понижать входное напряжение, а потом повышать. NCP5030 делает переключение между режимами понижения (buck) и повышения (boost) автоматически, прозрачно для пользователя.

Схема включения NCP5030 приведена на рис. 3:

Недостатком решения на основе этой микросхемы является наличие только цифрового управления диммированием – на вход CTRL надо подавать дискретный ШИМ сигнал для управления яркостью частотой не более 1000 Гц. Также микросхема не располагает средствами для контроля за напряжением батареи и отключения при падении напряжения ниже порога 2.7 вольт.

При подборе деталей некоторые трудности вызывает поиск резистора R3. Его номинал – 220 миллиОм или 0.22 Ом. Напряжение с этого резистора (прямо пропорциональное току через светодиод) используется микросхемой для регулировки тока светодиода. Я не нашел такого резистора за приемлемое время и деньги, поэтому решил сделать его из нескольких параллельно включенных резисторов большего номинала (1 ом и около того). Кроме низкой цены и доступности резисторов таких номиналов дополнительно появляется возможность легко регулировать ток светодиода установкой разного количества резисторов параллельно. В моем случае получились три резистора по 1 ому и параллельно резистор в 2 ома из двух по 1 ому. Суммарное сопротивление этих резисторов (R11, R13-R16) составляет 0,285 ом, что при напряжении обратной связи в 200 милливольт дает ток в светодиоде 700 мА.

Микросхема NCP5030 выполнена в корпусе WFDN размером 3 на 4 мм с 12 выводами и очевидно рассчитана на монтаж на печатную плату. Расстояние между выводами составляет 0,5 мм, толщина выводов 0,3 мм, плюс она требует присоединения вывода 13 «под брюшком» к общему выводу печатной платы для теплоотвода. На рис. 4 представлено расположение выводов NCP5030.

Делать печатные платы для единичных изделий я считаю нецелесообразным по ряду причин, одна из которых – затрудненность доработки изделия. Если в голову пришла какая-то идея – то на этапе, когда печатная плата реализована – доделать сложно. Поставить дополнительные перемычки или пару элементов – можно, но добавить узел – трудно.

Поэтому я считаю оптимальной для себя технологию изготовления плат из двухстороннего фольгированного стеклотекстолита путем прорезывания дорожек канцелярским ножом. Взяв плату достаточного размера всегда можно по мере возникновения новых идей доделать новую часть, не трогая уже сделанного. Достоинством метода является минимальное время на изготовление такой платы, не нужны вредные реактивы типа хлорного железа или другие едкие вещества для травления платы. Этот метод «продвинутого макетирования» доказал свою пригодность – сделанные так приборы прожили у меня дома порядка 30 лет и были сняты с эксплуатации по причине морального устаревания и замены на более совершенные современные устройства.

Однако сделать прорезыванием плату для столь мелкой микросхемы сложно или вовсе невозможно. Но можно нарезать дорожек разумного размера, который выполняется без труда, например, с шагом около 1 мм, установить микросхему вверх ногами и распаять ее под микроскопом. Вывод 13 припаять медной проволокой 0,5 мм к общему проводу платы, остальные выводы присоединить проводом 0.12 мм, а силовые выводы – косичкой из 3-4 таких проводов. Результат показан на рис. 5.

Схема заработала сразу. Потребовалось только подстройка тока светодиода напайкой дополнительных резисторов в 1 ом, чтобы получить 700 мА.

Микросхема при длительной работе (часы) едва теплая, палец ощущает слабое тепло и только. Это значит, что решение по теплоотводу припайкой медного провода правильное и обеспечивает нормальный режим работы по теплу. Тщательное исследование сигналов осциллографом показало идеальные формы, точно по мануалу.

Для полноценной реализации всех заложенных идей нужно чем-то реализовать ШИМ сигнал, который будет управлять яркостью светодиода и слежение за напряжением батареи, чтобы отключить систему при падении напряжения ниже критического уровня.

Анализ возможных решений привел к выводу, что самым дешевым (35 р.) и универсальным по возможностям является использование простого микроконтроллера типа ATTINY13A. Этот микроконтроллер не требует никакой обвязки, кроме фильтрующего конденсатора по питанию.

Ключевые параметры ATTINY13A

• Напряжение питания 1.8-5.5 вольт • 4 канала АЦП с внутренним либо внешним опорным сигналом • Ток потребления менее 1 мА • 6 программируемых линий ввода-вывода (5, если не использовать ножку сброса) • 2 аппаратных ШИМ канала.

Определенную роль в выборе этого контроллера сыграла и возможность программировать его в среде Ардуино и прошивать программу через Ардуино.

Возможностей встроенного АЦП вполне хватит для снятия положения движка переменного резистора и измерения напряжения батареи. В состав микроконтроллера входит собственный источник опорного напряжения (1.1 вольт), что дает возможность измерить напряжение батареи. Программно можно включать либо внутренний опорный источник (если надо измерить напряжение батареи), либо внешний – если надо измерить положение движка резистора. Также остаются пара свободных выходов, которые я использовал для управления двумя светодиодами разного цвета и аналоговой измерительной головкой. Два светодиода позволяет оценить состояние батареи одним взглядом: зеленый значит больше половины заряда, красный – меньше половины заряда.

Для программирования требуется отсоединить 4 вывода от схемы и присоединить из к программатору. Вытаскивать микроконтроллер для программирования из кроватки неудобно, поэтому я установил на плате 6 штырьковых коннекторов (4 сигнальных + 1 питание + 1 общий). Они представляют из себя два штырька, на которые одевается стандартный джампер. Если джампер на месте – схема функционирует в штатном режиме. Для программирования надо джамперы снять и присоединить к свободным штырькам выводы программатора. В режиме программирования питание на ATTINY13A подается от программатора.

В инете достаточно ресурсов по теме программирования ATTINY13A через плату Ардуино и созданию программ в IDE Arduino. Я использовал эти источники и .

Из тонкостей – нужен файл boards.txt, в котором правильно расписаны параметры, управляющие тактированием процессора и уставками внутреннего делителя.

Без этого частота ШИМ сигнала будет неверной и программные задержки будут отрабатываться неверно. Мне пришлось также подправить имя ATTINY13 на ATTINY13A, программатор в начале процесса опрашивает микроконтроллер и выдает ошибку, если не может найти секцию с точно таким именем.

Принципиальная электрическая схема фонаря показана на рис. 6.

Напряжение батареи подается на вход ADC2 ATTINY13A через резисторный делитель. При измерении напряжения батареи программно включается внутренний опорный источник для АЦП напряжением 1.1 вольт и поэтому максимальное допустимое напряжение на входе не должно превышать 1.1 вольта. Исходя из этого ограничения и рассчитаны номиналы делителя R1-R2 с некоторым запасом.

Напряжение с движка переменного резистора подается на вход ADC3 и при считывании этого входа используется внешняя опора – напряжение батареи. В таком режиме данные с АЦП пропорциональны углу поворота движка потенциометра и не зависят от напряжения батареи. Эти данные меняются в диапазоне 0-1023.

На рис. 7 представлена плата фонаря целиком со всеми деталями.

Рис. 7 Плата фонаря целиком

Обдумывая вопрос аналогового управления яркостью светодиода, я решил, что поскольку органы слуха и зрения человека воспринимают сигнал логарифмически – то будет правильно использовать резистор с обратной логарифмической зависимостью выходного сигнала от угла поворота – чтобы казалось, что сигнал (яркость светодиода) меняется плавно и равномерно по всему диапазону поворота ручки. При покупке такого резистора надо учесть особенности маркировки отечественных и зарубежных резисторов – отечественные маркируются как тип «В», а зарубежные – как тип «А».

К сожалению, я не смог купить переменного резистора небольшого размера с антилогарифмической (звуковой) зависимостью и с выключателем. Поэтому я купил резистор с линейной зависимостью небольшого размера и с выключателем и применил аппаратный хак (резистор R4 на принципиальной электрической схеме), давно известный радиолюбителям. Этот способ описан например, тут.

Место под установку резистора в корпусе фонаря подобрано опытным путем – так, чтобы его было удобно поворачивать большим пальцем и так, чтобы он внутри не мешал другим компонентам (см. Рис.

При тестировании фонаря с большими токами (700-800 мА) проявился плохой контакт в штатном кнопочном выключателе. На малых токах дефект не проявлялся, а на больших – фонарь начинал хаотично мигать.

Разобрал фонарь, посмотрел на кнопку, прочитал название, посмотрел в инете параметры и понял – эта кнопка в принципе не пригодна для коммутации таких токов, так как рассчитана на 100 мА. Пришлось взять из «запасов Генштаба» кнопку КМА 1-IV, выпущенную в 1973 году в СССР, способную коммутировать ток до 3А и поставить ее на место штатного недоразумения.

В процессе испытаний выяснилось, что в режиме максимальной мощности алюминиевый радиатор, на котором установлен светодиод, нагревается до примерно 60 градусов. Неудивительно, корпус полностью закрытый, толстая пластмасса, теплоотвода никакого. Обдумал, насверлил отверстий в корпусе так, чтобы наружный воздух охлаждал радиатор. Стало гораздо лучше – теперь нагрев едва заметен при долгой работе в несколько часов. Я зафиксировал фонарь в тисках и вставил в отверстие сверху ртутный лабораторный термометр так, чтобы он касался алюминиевой пластины. После длительной работы на полной мощности (больше пары часов) температура стабилизировалась на отметке около 40 градусов С. На мой взгляд – вполне удовлетворительно. На рис. 9 представлены отверстия в корпусе фонаря.

Испытание фонаря при работе на полную мощность длилось более 8 часов до отключения по падению напряжения ниже 2.7 вольта. Это дает суммарную емкость четырех элементов 18650 в примерно 6000 мАч или 1500 мАч на каждый элемент. Неплохо для 10-ти летних элементов!

При обсуждении проекта с моим другом, туристом-водником, родилась идея аналоговой индикации заряда батареи. Примерно так, как это было сделано в первых кассетных носимых магнитофонах – там был встроенный стрелочный индикатор уровня заряда батарей и уровня записи. Тогда еще уровень записи надо было выставлять вручную! Имея перед глазами индикацию остатка заряда можно принять решение, как расходовать энергию: поберечь заряд или можно включить на полную, не жалея.

Вскоре после этого я случайно попал в магазин Кварц на ул. Буженинова и, разглядывая витрины в ожидании завершения дел жены, наткнулся на вот такой замечательный аналоговый индикатор (Рис. 10):

Прикинув размеры, я решил, что сумею вставить его в крышку. С обратной стороны индикатор упирался в плату и его пришлось немного выдвинуть из крышки. Индикатор зафиксирован термоклеем.

Красный и зеленый светодиоды размещены над индикатором уровня.

Для управления индикатором я применил второй ШИМ канал в ATTINY13A. Расчет добавочного сопротивления и параметров ШИМ был произведен так, чтобы максимальное отклонение стрелки индикатора происходило при подключении зарядки, а минимальное – при напряжении отсечки в 2.7 вольта. Это цифровой аналог «растянутой шкалы». Удачно получилось, что половина разряда аккумулятора пришлась как раз на желтую зону индикатора.

Для управления двумя светодиодами (красным и зеленым) у меня остался один вывод. Пришлось немного подумать :). Решение см. на принципиальной схеме, элементы R5 — R7 и HL1 — HL2. Незначительный минус такого решения – невозможность выключить светодиоды совсем, даже если перевести вывод ATTINY13A в третье состояние – светодиоды будут тускло светиться оба.

Последнее, что я приделал к фонарю – плата заряда литиевых батарей (Рис. 12). Купил некогда на дилэкстриме, соблазнившись дешевизной, но вот и ей нашлось применение. Заряд идет током порядка ампера и идет довольно долго – до 10 часов. Впрочем, при емкости около 6000 мАч и токе заряда 1А примерно так и должно быть. В процессе заряда плата светит синим диодом, после окончания он становится зеленым. В принципе можно было бы и не использовать эту зарядку, а разбирать фонарь и заряжать элементы в отдельном внешнем зарядном устройстве. Я так и планировал делать поначалу, считая, что 6000 мАч хватит на весь сезон. Но лень – двигатель прогресса – победила и я встроил зарядное устройство. Теперь достаточно присоединить кабель miniUSB – USB от любого источника 5в. Для целей зарядки лучше зарядка от сети с током 1-2 А, хуже порт компьютера с током 500 мА, но тоже приемлемо. Ссылок на плату не даю, поиск по словам «1a lithium board charger» даст вам море ссылок. Дополнительный бонус – исчезла необходимость обеспечивать легкую разборку фонаря для извлечения аккумуляторного блока, можно закрепить этот блок стационарно.

Плата размещена в крышке фонаря, так, чтобы при закрывании крышки плата входила в свободное место в теле фонаря. Плата закреплена термоклеем по месту. MiniUSB разъем доступен снаружи.

Управление аналоговым индикатором свелось к расчету параметров ШИМ сигнала в зависимости от напряжения батареи.

Программа управления для ATTINY13А небольшая и я ее привожу непосредственно тут:
Программа управления для ATTINY13А
void setup() { pinMode(0, OUTPUT); pinMode(1, OUTPUT); pinMode(2, OUTPUT);

/* Setting Divisor Frequency PWM on 9.6, 4.8, 1.2 MHz CPU 0x01 divisor is 1 37500, 18750, 4687 Hz 0x02 divisor is 8 4687, 2344, 586 Hz 0x03 divisor is 64 586, 293, 73 Hz 0x04 divisor is 256 146, 73, 18 Hz 0x05 divisor is 1024 36, 17, 5 Hz */

TCCR0B = TCCR0B & 0b11111000 | 0x02; // 0x02 divisor is 8 586 Hz

}

void loop(void) {

analogReference(INTERNAL); int batt=analogRead(3); delay(25); batt=analogRead(3); analogReference(EXTERNAL); int resistor=analogRead(2); delay(25); resistor=analogRead(2); int r=(resistor*32); r=r/147+33;

if (r > 255) {r=255;} //led starts to light at 13.8% PWM

if (batt > 440) { analogWrite(0, r); } else { analogWrite(0, 0); }

if(batt<560) { digitalWrite(2, HIGH); } else { digitalWrite(2, LOW); }

if(batt<440) {batt=440;} if(batt>(440+255)) {batt=440+255;}

analogWrite(1, batt-440);

}

Для получения нужной частоты для диммирования светодиода пришлось изменить делитель таймера для получения частоты 586 Гц. В реальности измеренная частота ШИМ сигнала получилась 555 Гц, что достаточно близко к расчетной с учетом точности встроенного тактового генератора.

Двойное чтение из АЦП применено так как по некоторым утверждениям первое преобразование после переключения опоры дает неадекватный результат.

Остальной код на мой взгляд тривиален и пояснений не требует.

Испытания показали,

что поставленные задачи выполнены:

Получился фонарь с плавной регулировкой яркости от moonlite до полной яркости, с батареей около 6000 мач, которой хватает на 11 часов работы с полной яркостью и наверно на неделю работы в режиме MOONLITE по расчетам.

Источник питания – литиевые элементы 18650 из старой батареи от ноута, обрели вторую жизнь.

Светодиод не перегревается, находится в правильном тепловом режиме.

Диммирование частотой около 550 Гц обеспечивает более-менее безопасный режим для глаз.

Имеются как аналоговый индикатор напряжения аккумулятора, так и дискретная индикация на двух разноцветных светодиодах.

Точности АЦП микроконтроллера хватает для уверенного отключения системы по критичному напряжению при разрядке аккумулятора, остаточный ток потребления в районе нескольких миллиампер неопасен для аккумулятора такой емкости, даже если пользователь не отключит фонарь сразу, а сделает это с запаздыванием. В принципе можно изменить код программы так, чтобы при критически низком уровне аккумулятора светодиоды тоже гасли полностью. Тогда оставшегося тока потребления микроконтроллера в сотню микроампер будет недостаточно для нанесения ощутимого вреда аккумуляторам.

Встроенная зарядка позволяет использовать фонарь в режиме ожидания с постоянно подключенным источником, что обеспечивает постоянную 100% зарядку фонаря, что удобно на даче в условиях случайных отключений электричества.

Бюджет проекта.

Детали обошлись в 660 р на три комплекта, т.е. 220 р на один фонарь. Литиевые элементы и т.п. – бесплатно. Аналоговый измерительный прибор стоил 550 р, но он не является необходимым. Времени потрачено на разработку и изготовление конечно гораздо больше, чем потребовалось бы на простую замену свинцовой батареи, но удовольствие от творчества бесценно При покупке элементов я стремился к унификации. Так, например, если в схеме требуются фильтрующие конденсаторы 10-22 мкф, то имеет смысл купить не разные по паре штук, а 10 штук самого большого номинала (22 мкф в данном случае). Цена за 10 штук будет меньше, чем за единичные конденсаторы разной емкости, а на функционировании схемы увеличение емкости фильтрующих конденсаторов скажется только положительно.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]