Инфракрасный фонарь для видеонаблюдения: как сделать своими руками

Одним из важнейших критериев эффективности видеонаблюдения является достаточная освещенность. Однако далеко не на всех объектах существует возможность применения светильников. На выход в такой ситуации приходит ИК-подсветка. Рассмотрим, какие ее типы существуют, когда лучше всего ее использовать, что собой представляют модели, предназначенные для видеокамер, какие виды ИК-прожекторов бывают и в чем их преимущества, а также как своими руками изготовить ИК-прибор и что для этого понадобится.

  • 5 Как сделать ИК подсветку для видеонаблюдения своими руками
  • 6 Основные выводы
  • Использование ИК-фонарей в видеонаблюдении

    Надо понимать, что электронно-оптический преобразователь (ЭОП) фотокамеры устроен куда проще нашего зрения. Он реагирует только на силу отражённого света от объекта. Если нет света, то нет и изображения. Для получения изображения необходим определённый уровень освещённости наблюдаемого объекта. Современные ЭОП начинают видеть при освещённости от 0,0005 люкса. На рис. 2 изображены снимки с инфракрасной подсветкой и без неё (для сравнения).

    В дневное время источником света является солнце, свет которого содержит весь известный спектр частот. В тёмное время для видеонаблюдения требуется освещение видимым или невидимым светом. С видимой подсветкой всё понятно, для скрытной применяются инфракрасные фонари. ИК-подсветка используется в основном совместно с приборами ночного видения. К ним относятся:

    • монокуляр,
    • очки ночного видения (НВ),
    • бинокль НВ,
    • прицелы НВ,
    • двухканальный монокуляр,
    • комбинированные и специальные приборы.

    На рис. 3 изображён монокуляр ночного видения в разрезе с указанием составляющих деталей.

    Ложные срабатывания датчика движений

    Те, кто пользуются камерами видеонаблюдения замечают, что во время снегопада, дождя или тумана камера постоянно отправляет сообщения тревоги. Также это происходит летом из-за насекомых, которые летят на свет встроенной в камеру ночной подсветки.

    Ложные срабатывания возникают из-за засвечивания подсветкой объектов, которые движутся близко к объективу камеры.

    Рассмотрим способы избежания ложных срабатываний ночью.

    1. Установка камеры под козырёк. Это избавит от срабатываний на дождь и снег. Но не поможет от тумана, паутины и насекомых.
    2. Отключение на ночь датчика движений по расписанию. Не самый лучший вариант, так как можно пропустить важные события.
    3. Отключение встроенной инфракрасной подсветки и установка дополнительного освещения, например, ИК-прожектора или обычного фонаря. Этот вариант решает вышеописанные проблемы.

    Основная характеристика

    ИК-прожектор представляет собой специальное устройство, которое работает исключительно в инфракрасном спектре благодаря наличию 1 и более ламп. Данное преимущество делает все темные объекты видимыми для камеры наружного видеонаблюдения. Подсветка является очень важным составляющим, так как видеокамеры наружного наблюдения могут нормально фиксировать изображения только при наличии эффективной работы световых лучей, которые отбиваются от различных предметов, тем самым делая картинку более четкой. Без необходимого освещения предметы на картинке будут размытыми и серыми.

    ИК-подсветка состоит из следующих частей:

    • Панель, которая имеет в своей структуре светоизлучающие диоды. Данный элемент необходим для обеспечения нормальной работы устройства даже при минимальном освещении или его отсутствии.
    • Светофильтр. Специальный фильтр необходим, чтобы демаскировать устройство. Функция светофильтра заключается в полном поглощении видимой составляющей инфракрасного излучения.
    • Герметичный корпус. Обычно камеры наружного наблюдения устанавливают вне помещения, вся электронная схема требует защиты от неблагоприятной погоды. Для этого устройство помещают в герметический корпус.
    • Драйвер питания. Данное приспособление необходимо для того, чтобы камеру можно было подключить к сети 220 В, так как сам светоизлучающий диод питается малым количеством энергии.

    Принцип действия такого оборудования

    Злоумышленник, который не знает о наличии камер и инфракрасного излучения, не догадывается о том, что его снимают. Такая особенность является весьма важным фактором в функционировании эффективной охранной системы. Человек, наблюдающий за происходящим на экране монитора, сразу же обнаружит преступника. Охранник незамедлительно вызовет полицию, которая обезвредит злоумышленника.

    Достоинства инфракрасных прожекторов

    В настоящее время на рынке предлагается оборудование, созданное на базе световых диодов. Оно имеет ряд преимуществ перед устаревшими моделями, основными элементами которых являются классические лампы. Достоинства:

    • Надежность использования.
    • Длительный срок эксплуатации.
    • Безопасность.
    • Высокие экологические показатели.
    • Экономичность.

    Светодиодные инфракрасные прожекторы потребляют небольшое количество электрической энергии. Это дает возможность существенно снизить расходы, связанные с эксплуатацией оборудования. Ориентировочный срок работы ИК-прожекторов составляет порядка 100 тысяч часов. Потребность в замене оборудования может возникнуть только через 20-30 лет. Срок зависит от условий эксплуатации и времени устройства в сутки.

    Световые диоды неприхотливы в обслуживании, не боятся случайных механических воздействий. Они располагаются в специальном защитном корпусе, который полностью герметичен. Внутрь него не попадет влага и пыль.

    Старые прожекторы на лампах наносят вред организму человека. Излучение, создаваемое световыми диодами, полностью безопасно и безвредно. Рабочая температура диода составляет порядка восьмидесяти градусов Цельсия (не более). Это значительно увеличивает пожарную безопасность ИК-прожекторов.

    В чём идея?

    Вообще, идея родилась во время очередной посиделки с друзьями, как будут просвечивать различные материалы в различном диапазоне цветов сквозь ткань. Да, да, именно так, если вы понимаете о чём я ;). Но на деле оказалось, что смотреть окружающий мир намного интереснее, чем пытаться разглядеть бельё сквозь одежду в ИК лучах (фантазия лучше). Да и как-то стар уже стал для подобных развлечений.

    На этой посиделке у нас была камера видеонаблюдения, которая умеет снимать ночью и чувствительна к ИК-диапазону. Она давала отличное разрешение и так бы статья могла бы и не появиться, но у данной камеры не было светофильтра, который бы отсекал видимый свет и оставлял только ИК. В принципе, такой фильтр возможно достать, и те, кто задумается повторить подобную поделку, могут его поискать на известных аукционах. Поэтому был выбран немного другой путь — это взять инфракрасный детектор валют и переоборудовать его в подобную камеру. Тем более, что там есть всё, что нужно для наших целей, и даже дисплей.

    Возможные проблемы

    Перегрев внутреннего модуля ИК-излучения – некоторые камеры из-за конструктивных недостатков перегреваются при работе в ИК диапазоне, что приводит к нарушению восприятия картинки. В таком случае модуль отключается, однако видеонаблюдение в ночное время становится невозможным.

    Наличие слепых зон в кадре – угол освещения встроенного ИК модуля крайне узок, поэтому порой необходимо устанавливать несколько камер, чтобы перекрыть необходимую территорию. Купив ИК прожектор, можно решить данную проблему более бюджетно.

    Наличие экранирующего защитного стекла камеры – некоторые модели имеют полупрозрачное стекло или пластик, которые защищают «внутренности» камеры. Инфракрасный луч может частично отражаться от такого материала, создавая засветы на изображении.

    В целом, покупка ИК-прожектора для видеокамеры – это выгодная инвестиция, которая поможет за короткое время улучшить качество видеонаблюдения! Тем не менее, рекомендуется получить консультацию специалиста, что проблема именно в низком качестве ИК-подсветки, а не в чем-то другом.

    Светодиодная ИК-подсветка для видеокамеры

    У многих бытовых видеокамер есть определённая недоработка в виде слабой инфракрасной подсветки для съёмки в ночное время или её полного отсутствия. Практически все видеокамеры наружного наблюдения оснащены модулем инфракрасной подсветки для функционирования ночью. Попробуем реализовать это решение в обычной бытовой видеокамере.

    В виде образца выступает бытовая ручная видеокамера JVC со штатной подсветкой. Первоначальным вариантом совершенствования было разобрать и перепаять штатную светодиодную подсветку на инфракрасную. Однако возникли сложности, связанные с невозможностью приобретения мощных, широкоугольных инфракрасных светодиодов подходящего размера. Посетив множество специализированных магазинов, выбор был остановлен (не оказалось других вариантов) на инфракрасных светодиодах с углом рассеивания 60 градусов (корпус прозрачный 5 мм, крепление DIP, интенсивность свечения слабая, напряжения 2,5 Вольта). Фактически данный тип светодиодов и определил конструкцию будущей инфракрасной подсветки.

    Размерив объектив по внешнему радиусу, была изготовлена цилиндрическая плата на 10 светодиодов. Подключение параллельное, рассчитывалось на питание от трёх “пальчиковых” (АА) батареек. Фактически оказалось, что достаточно будет двух “мизинчиковых” (ААА) батареек. Позже выяснилось, что в конструкции самой платы допущена ошибка – это отсутствие крепления. Данная недоработка отображена на фотографии.

    Под корпус футляра (устройства) для бытовой видеокамеры была выбрана прямоугольная труба вентиляционного канала изготовленная из ПВХ.

    Особенность данного материала такова, что под действием температуры, нагнетаемой промышленным электрическим феном, ПВХ-материал легко формуется, обрабатывается и клеится.

    Чтобы закрепить плату с инфракрасной светодиодной подстветкой и сделать конструкцию в районе объектива более надёжной, пришлось увеличить толщину футляра на 5 мм при помощи заготовки из вспененного ПВХ. Данная заготовка была приклеена обычным клеем “МОМЕНТ”, предварительно в заготовке были проточены углубления под выступающие места платы.

    А вот при установке контейнера для батареек были определённые сложности, которые повлияли на реализацию первоначальной идеи (об этом упоминалось выше). Не был найден контейнер на три батарейки, поэтому пришлось воспользоваться контейнером на две батарейки.

    В целом конструкция футляра с инфракрасной светодиодной подстветкой получилась удачная, конечно отдельные элементы можно было бы сделать по-другому, но это попробуем реализовать в следующий раз.

    Пример съёмки бытовой видеокамерой JVC с использованием светодиодной инфракрасной подсветки в ночное время суток собранной своими руками выглядит следующим образом:

    С итоговым отчётом о проделанной работе можете ознакомиться просмотрев видео, представленное ниже.

    Желаем Вам успеха!

    Инструменты

    Инфракрасное освещение всегда было актуально для разработки различных охранных систем, так как оно позволяет видеть объекты даже в полной темноте. В последнее время проявление позитивного влияния ИК-света замечено и при выращивании тепличных растений. Стоимость профессионального оборудования достаточно высока, а комплектующие далеко не всегда соответствуют поставленным целям. Поэтому рассмотрим, как своими руками сделать инфракрасный фонарь.

    Оглавление

    Принцип работы инфракрасного фонаря

    В первую очередь определим, что такое инфракрасный фонарь и для каких целей его используют. Подобные фонари предоставляют возможность осуществить дополнительную подсветку объектов для наблюдения с помощью лучей в инфракрасном диапазоне.

    Свет, выделяемый таким фонарем — невидим человеческому глазу, однако позволяет разглядеть интересующий предмет даже в полной темноте за счет использования инфракрасных светодиодов. Особенно это будет актуальным для охранной сферы, ведь затруднительно поставить на объекте мощный прожектор, от работы которого будет больше неудобств. В таком случае и стоит использовать фонарь инфракрасной подсветки, который имеет такой ряд свойств:

    Подобное освещение будет оптимальным выбором, поскольку такие фонари обладают рядом преимуществ:

    Комплектующие для сборки инфракрасного фонаря

    Собрать инфракрасный фонарь своими руками не так уж и сложно. Для начала понадобятся простейшие инструменты:

    • крестовые отвертки (различных размеров),
    • паяльник с тонким жалом, мощностью 60 Вт,
    • инфракрасные светодиоды (средняя стоимость от 1 доллара за штуку),
    • провод для подведения питания от светодиодов до аккумуляторной батарейки,
    • собственно, сама батарейка для ИК-фонаря

    Кроме этого, следует использовать изоленту и взять основу для фонаря. Сгодится и простой фонарь, который будет переоборудован в инфракрасный. Для создания такого прибора не требуется что-то специфическое, любые комплектующие возможно приобрести в первом же магазине электротехники.

    Процесс сборки инфракрасного фонаря

    Создание инфракрасного фонаря тоже не отличается сложностью. По сути, если он конструируется на основе простого светодиодного, то зачастую достаточно путем перепайки заменить обычные светодиоды на инфракрасные — и устройство готово. Если же требуется создать технику посложнее, тогда придется провести несколько больше манипуляций:

    • старый фонарь разбирается и из него извлекается линза (защитное стекло, если оно имеется — лучше оставить),
    • к инфракрасным светодиодам (или светодиоду, если используется один) припаиваются силовые провода,
    • следом к элементу питания (батарейке или аккумуляторной батарее) припаивается второй конец провода,
    • завершающим этапом будет изоляция соединений. При спайке желательно закрывать спаянные элементы с помощью трубок термоусадки, провода следует скреплять между собой изолентой.

    После того, как действия были выполнены — инфракрасный фонарь готов.

    Довольно часто для осуществления эффектного наблюдения за удаленными объектами следует использовать нечто более существенное, нежели простой ИК-фонарь. Для этих целей вполне по силам собрать инфракрасный прожектор. У людей, неподготовленных к подобной работе, при упоминании слова прожектор может возникнуть ассоциация с громоздким осветительным оборудованием, однако это не так. Грубо говоря, прожекторы — это мощные инфракрасные фонари и со значительным количеством инфракрасных светодиодов.

    Для основы необходим корпус, который в дальнейшем и будет представлять собой ИК-прожектор. В случае, если планируется создать осветительный прибор малой мощности для бытовых нужд (к примеру, для осуществления ночной съемки) необязательно закрывать светодиоды защитным стеклом, в ином же случае, если предполагается использование прожектора в качестве осветительного прибора для систем видеонаблюдения — крайне рекомендуется заключить готовую конструкцию во влагозащищенный корпус.

    • в выбранном корпусе (допустим, имеющим вид пластиковой коробочки) производятся отметки (к примеру, 8-10 под такое же количество светодиодов в каждом ряду, которых так же будет несколько) Отметки должны проходить на равном расстоянии друг от друга (оптимально выбрать разницу в 5 мм),
    • с помощью сверла и маломощной дрели или шуруповерта на указанных отметках просверливают отверстия для вставки светодиодов. С другой стороны корпуса тоже следует продумать систему крепления. Если любительский ИК-прожектор будет присоединяться к фотоаппарату или видеокамере, то достаточно сделать одно отверстие, внутрь которого будет вставлен болт и впоследствии затянут гайкой,
    • макетную плату (для монтажа светодиодов) обрезают с помощью простых ножниц до нужных под монтаж размеров,
    • далее в ней располагают инфракрасные светодиоды так, чтобы катоды и аноды были расположены в ряд, а сами ИК-светодиоды попадали в просверленные отверстия в корпусе коробки,
    • ножки светодиодов сгибаются в одну линию для дальнейшей спайки, каждый ряд отдельно,
    • с помощью паяльника (оптимально подойдет модель с тонким жалом и мощностью нагрева в 60 Вт) дорожки ножек светодиодов спаиваются в линии,
    • после указанных действий черным силовым проводом осуществляется соединение дорожек анодов (к примеру, если ИК-светодиоды расположены в три ряда и соответственно будут иметь шесть рядов ножек на обратной стороне платы, то аноды представляют собой три ряда. К крайнему из них припаивается провод, с остальными рядами его подсоединяют с помощью перемычки),
    • к катодам следует припаять по резистору с сопротивлением 220 Ом, после чего перемычки резисторов соединяют в единое целое и к ним припаивают красный силовой провод,
    • с другой стороны кабелей должна быть подключена аккумуляторная батарейка,
    • после указанных действий корпус собирается и любительский ИК-прожектор, собранный своими руками, готов.

    Читать также: Как сделать клумбу своими руками фото.

    Желательно добавить возможность отключения подачи питания на светодиоды. Несмотря на их малый расход энергии, попросту нецелесообразно подавать питание, когда в ИК-подсветке (особенно в светлое время) нет потребности.

    Области применения инфракрасного фонаря

    Как уже было написано несколько выше, основная среда применения инфракрасных фонарей и прожекторов пролегает в сфере безопасности. Фонари наиболее оптимально подходят для следующих целей:

    • в качестве подсветки в ночное время суток перед домофонами и дверными видеоглазками, чтобы иметь возможность непосредственно разглядеть человека,
    • подсветка систем внутреннего видеонаблюдения (особенно актуально для небольших помещений),
    • дополнительное освещение пространства в ночное время (для наружных камер наблюдения),
    • инфракрасные прожекторы (исключая любительский класс, который по дальности работы следует отнести к классу ИК-фонарей) применяются в тех случаях, когда требует обеспечить хорошую степень наблюдения за объектами на средних (от 20 до 50 метров) и дальних дистанциях (вплоть до 400 метров),
    • обеспечение эффективной подсветки для систем видеонаблюдения при охране зданий с большой площадью,
    • просмотр охраняемого периметра,
    • дополнительное освещение для приборов ночного видения,
    • при недопустимости использования прожекторов освещения, которые могут причинять неудобство при работе с ними.

    Отдельно стоит выделить еще один занятный аспект использования инфракрасных фонарей, раз уж речь зашла о видеонаблюдении. В силу каких-либо причин не каждый человек пожелает, чтобы видеокамера могла его зафиксировать. В таком случае существует простой и крайне дешевый вариант, как можно обеспечить себе камуфляж и скрыть лицо от камер видеонаблюдения. Для этого достаточно создать простейшее устройство, работающее по принципу инфракрасного фонаря. По указанной методике сборки такого фонаря следует закрепить на головном уборе (подойдет обычная кепка) несколько инфракрасных светодиодов, подключаемых к девятивольтовой батарейке. Подобная система совершенно не будет выделяться своим внешним видом, однако для камер видеонаблюдения верхняя часть корпуса человека будет представлять собой яркое пятно, в котором нельзя будет различить лицо.

    Злоумышленники могут не спешить радостно потирать руки, указанный способ действует лишь против бюджетных камер видеонаблюдения, более дорогие модели не столь чувствительны к влиянию на них ИК-излучения. Поэтому на хорошую систему видеонаблюдения подобные трюки не подействуют, лицо человека будет хорошо различимо даже при использовании нескольких рядов ИК-светодиодов.

    Техника безопасности при работе с инфракрасным фонарем

    Важно помнить, что использование указанной технологии может нанести вред здоровью человека при неправильном выполнении требований по технике безопасности.

    • инфракрасное излучение от мощных источников при прямом попадании на сетчатку глаза способно высушивать слизистую оболочку, что приведет к усталости глаз и даже болезненным ощущениям. Поэтому, при использовании такого устройства, как инфракрасный лазерный фонарь не следует ни в коем случае направлять его в глаза человеку (разве только если подобный фонарь используется в целях самозащиты от нападавшего),

    • контакты, по которым проходит питание — следует надежно изолировать от возможного воздействия на них влаги, что вызовет коррозию или короткое замыкание схемы,
    • пайку контактов следует проводить хорошо работающим паяльным оборудованием, чтобы не допустить возможности получения ожогов при проведении работ,
    • следует стараться избегать прямого воздействия солнечных лучей на инфракрасные светодиоды во избежание их перегрева,
    • корпус инфракрасного оборудования следует надежно собрать, чтобы предотвратить возможность попадания внутрь системы загрязнения или влаги.

    Указанные устройства приобретают в последнее время все большую популярность благодаря своему качеству и долговечности срока службы. Низкое энергопотребление, бюджетная стоимость инфракрасного осветительного оборудования в совокупности с его возможностями — станут убедительным доводом в сторону выбора подобных устройств для обеспечения безопасности. Собранные любительские системы позволят без лишних затрат заиметь вдовес к фотоаппарату или видеокамере полноценное вспомогательное оборудования для совершения фото- и видеосъемки в ночное время.

    Основные характеристики

    Рассмотрим технические характеристики ИК-подсветки:

    • длина волны (λ),
    • тип излучателя,
    • рефлектор (отражатель),
    • выходная мощность,
    • угол излучения,
    • рабочая дальность,
    • режимы,
    • питание,
    • время работы,
    • рабочая температура,
    • крепление,
    • габариты,
    • материал,
    • цвет,
    • вес.

    На рис. 4 показаны основные детали камеры видеонаблюдения с внутренней инфракрасной подсветкой.

    Для надёжной работы задан начальный диапазон частоты инфракрасного спектра, то есть после частоты красного цвета. Чёткой границы нет. Выбрано 4 диапазона:

    • 730–750 нм,
    • 830–850 нм,
    • 870–880 нм,
    • 930–950 нм.

    Мнение эксперта

    Алексей Бартош

    Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

    Важно отметить, что с увеличением длины волны падает мощность излучения и уменьшается чувствительность ЭОП. Для подсветки на дальнем расстоянии рекомендуется применять излучатели на 830–850 нм, а на ближнее — 930–950 нм. Есть ещё одна тонкость. В диапазоне излучения 730–750 нм, в рефлекторе фонаря появляется слабое красное свечение. Некоторые животные реагируют на это свечение.

    В качестве источника излучения применяются ИК-светодиоды и лазерные инфракрасные диоды. Светодиоды излучают спектр частот, то есть создают мягкое излучение, а лазерные дают более жёсткое излучение. Выпускаются лазерные излучатели с внутренней оптической системой. Такие излучатели формируют узкий луч.

    Рефлектор предназначен для образования светового пучка. Геометрический размер его представляет собой равнобедренный треугольник с вершиной у источника света. Угол раскрыва определяется на уровне 0,5 по оси. Средний угол раскрыва составляет 40–80 градусов (угловых). Важно понимать, что с увеличением угла расхождения лучей расстояние подсветки уменьшается, а мощность прожектора в основном определяет не дальность, а площадь освещения. На рис. 5 показаны внешние подсветки разного вида.

    В дорогих моделях есть подстройка светового пятна. Рефлектор может быть как металлическим, так и пластмассовым и соответствовать требуемой жаропрочности. Инфракрасные диоды при работе нагреваются. Чем больше их мощность, тем больше нагрев. Поверхность рефлектора бывает текстурированная или гладкая. Спереди от рефлектора находится линза, которая защищает рефлектор и инфракрасный диод от окружающей среды. Изготавливается из стекла или пластмассы.

    Мощность излучателей используется от милливатт до десятков ватт.

    В пункте «режим» указаны возможные варианты работы. Например, в подсветке типа «хамелеон» возможны варианты:

    • строб;
    • маячок;
    • SOS;
    • регулировка излучения: высокое, среднее, низкое, минимальное;
    • дистанционное управление.

    Для крепления ИК-фонарика к приборам ночного видения используют разнообразные типы приспособлений. Самые распространённые из них — рельсовые планки Weaver и Picatinny, переходники для штативного гнезда с резьбой ¼, стринги для шлема или головы, универсальное крепление под стрелковое оружие. Разница между планками будет в ширине прорези. У планки Вивера = 0,180″, а у Пикатинни = 0,206″, а между центрами – 0,394″ и глубина — 0,118″.

    К корпусу предъявляются жёсткие требования. Он должен быть лёгким, ударопрочным, водонепроницаемым. Выдерживать отдачу ружья. В основном выполняется из анодированного высококачественного алюминиевого сплава, так как он работает в жёстких погодных условиях.

    Преимущества и недостатки

    К достоинствам можно отнести:

    • ИК-излучение безопасно для человека и окружающей среды.
    • Обеспечивает незаметное освещение охраняемого объекта.
    • Использование внешней подсветки улучшает качество изображения. Её можно располагать в любом удобном месте. Решает проблемы встроенной подсветки. Можно подбирать правильный угол освещения, выбирать прибор по мощности, дальности действия и площади покрытия.

    К недостаткам относится изображение, которое получается чёрно-белым на цветной камере. Гладкие объекты (поверхность озёр или рек, стеклянные окна, кафель или глянцевая краска, снег, яркость заднего плана) отражают ИК-лучи и создают засвеченные пятна на изображении. Затрудняют видеоизображение также пыль, дождь, туман, летающие насекомые.

    Эксперимент

    На фото 1 приведен счетверенный стоп-кадр, полученный телекамерой цветного изображения (color), камерой «день/ночь» без ИК-чувствительности (dn), камерой с постоянной ИК-чувствительностью (dn ir) и камерой с подвижным управляемым ИК-фильтром (dn cut). Освещение в измерительной камере производится лампами накаливания. Отчетливо заметны искажения цвета в камере с постоянной ИК-чувствительностью. Примечательно, что особенно подвержены изменению цвета синтетические материалы.

    На фото 2 приведен стоп-кадр, полученный аналогичными камерами при минимальной освещенности. Все три камеры «день/ночь» перешли в черно-белый режим. Однако видно, что контрастность и яркость изображений цветной камеры и камеры «день/ночь» без ИК-чувствительности практически идентичны и явно уступают камерам с расширенным в область ИК спектральным диапазоном чувствительности.

    Естественно, только камеры «день/ночь» с ИК-чувствительностью могут работать с ИК-подсветкой. Однако реальная чувствительность в области ИК, а уже тем более на конкретной длине волны ИК-осветителя, остается для потребителя «тайной за семью печатями». Отчасти и поэтому тоже такой популярностью пользуются телекамеры цветного изображения «день/ночь» со встроенной ИК-подсветкой. В таком случае производитель сообщает (если, конечно, это правда), на какой дальности можно вести наблюдение.

    Если же вы применяете отдельный ИК-осветитель с телекамерой цветного изображения «день/ночь», вам не избежать «проб», а может быть «и ошибок». Причем, как правило, несколько мифические данные о ночной чувствительности в люксах здесь не помогут, поскольку ИК-излучение в люксах не нормируется. Для иллюстрации этой ситуации на фото 3 приведен стоп-кадр упомянутых выше камер при предельно малой освещенности от ламп накаливания.

    Очевидно, что камера с постоянной ИК-чувствительностью имеет существенно меньшую интегральную чувствительность в сравнении с камерой ICR (cut). С другой стороны, при освещении ИК-осветителем с длиной 930 нм изображения этих камер практически идентичны, что представлено на фото 4. К сожалению, нам никогда не известны даже относительные спектральные характеристики чувствительности камер «день/ночь». И в данном случае информация производителей сенсоров нам помочь не в состоянии, поскольку весьма редко распространяется на ИК-диапазон в сравнении с черно-белыми сенсорами.

    На рис. 1 (см. стр. 72) приведена спектральная характеристика чувствительности одной из самых популярных сейчас CCD-матриц – SONY Super HAD II, которая, как мы видим, нормируется только в видимом диапазоне.

    Естественно, ее можно интерполировать в область ИК, учитывая ход аналогичных характеристик черно-белых сенсоров. Но мы же не знаем, какие фильтры использует производитель. Ведь даже камеры с ICR имеют порой серьезную чувствительность в области ИК. Очевидно этот «тренд» обусловлен стремлением вытянуть большую чувствительность в цветном (дневном) режиме.

    Когда стоит использовать ИК подсветку

    ИК-подсвета чаще всегоприменяется в следующих случаях видеосъемки:

    1. Формирование благоприятных условий для освещения. Стандартные светильники не справляются с задачей равномерности распространения светового потока на всей наблюдаемой площади. ИК-прибор вкупе с ним позволяет подсветить тени, выровнять экспозицию и детализировать кадры.
    2. Создание скрытой системы подсветки. Многие системы безопасности проявляют эффективность, когда действуют незаметно для злоумышленника. Объект в полной темноте на самом деле может хорошо освещаться в инфракрасном диапазоне излучения и все события на нем детально фиксироваться на камеру.
    3. Улучшение функций видеоаналитики. ИК подсветка дает возможность максимально точно считывать и обрабатывать информацию системам слежения даже в полной темноте.
    4. Повышение пропускной способности передачи данных. Инфракрасное освещение позволяет улучшить качество изображения ночью и поспособствовать уменьшению объема записанных данных, и повысить скорость их обработки и передачи.
    5. Улучшение изображения мегапиксельных камер.

    При выборе видеокамеры для совокупной работы с ИК-подсветкой предпочтение нужно отдавать моделям, чувствительным к излучению в этом диапазоне. Хорошим примером является камера SONYExView HAD с ПЗС-матрицей.

    Сложные условия освещения

    Пожалуй, главная причина использования инфракрасной подсветки — это обеспечение возможности видеонаблюдения в темное время суток. Количество и качество света определяют качество получаемого изображения. Под качеством света в данном случае подразумевается то, насколько равномерно он распределён в поле кадра. Если объект плохо освещён — света недостаточно либо он распределён неравномерно, то не стоит ожидать хороших записей от камер видеонаблюдения, даже если используется отличное оборудование. Часто такие записи просто бесполезны. Несколько примеров позволяют наглядно проиллюстрировать качественное улучшение, достигаемое посредством инфракрасной подсветки (рис.2).

    Рис.2 Качественное улучшение, достигаемое посредством инфракрасной подсветки. Верхний ряд — подсветка выключена. нижний ряд — подсветка включена

    Общее заблуждение касательно инфракрасной подсветки заключает в том, что она не дает никаких преимуществ, когда объект наблюдения освещён (рис.2). Хотя, это утверждение и верно в целом, истина более сложна и, как обычно, во многом зависит от конкретного приложения и характеристик наблюдаемого объекта. Существуют также такие специальные приложения, когда применение инфракрасной подсветки оправдано скорее днем, нежели ночью. Но это тема отдельного разговора. Что же касается ночного видеонаблюдения, то и на искусственно освещённых площадках инфракрасная подсветка позволяет добиться лучшего результата. Инфракрасные прожекторы, как правило, размещают рядом с камерой и направляют непосредственно на объект наблюдения. Это позволяет выровнять экспозицию кадра и подсветить тени, создаваемые другими источниками света. Как результат, изображение лучше «читается»: значимые детали лучше различимы.

    Основа любой камеры — КМОП или ПЗС матрица. Именно матрица является светочувствительным элементом. Если есть свет, есть и изображение. Если нет, необходима подсветка. Иначе, матрица не работает. А что, если свет есть, но его совсем мало или наоборот слишком много? Насколько важным для камеры является количество света?

    Большинство современных камер, как было уже сказано, имеют отличные характеристики светочувствительности. В спецификациях указывают 0.1 Люкс и менее. В то время как производитель камер настаивает на том, что его камера может работать в условиях плохой освещенности, изображение от такой камеры может оказаться практически бесполезным.

    Рассмотрим спектр тонального перехода от белого к черному. В идеале, камера должна передавать все возможные градации яркости сцены наблюдения (рис.3): от полной темноты глубокой осенней ночи до ослепительного солнца летнего дня. В реальности же, любая камера имеет ограниченный динамический диапазон. И хотя на рынке существуют камеры с расширенным динамическим диапазоном, такого расширенного динамического диапазона зачастую все же не хватает, чтобы одновременно корректно передать детали изображения, как в глубокой тени, так и на ярком свету. Попытаемся, например, рассмотреть высококонтрастную сцену, где присутствует и яркий источник света (точка А) и детали на темном фоне (B).

    Рис.3 Спектр тонального перехода от белого к черному

    Как правило, камера со стандартными установками покажет только средний тоновый диапазон. Если поколдовать с настройками, можно настроить камеру так, чтобы сместить этот диапазон в правую сторону тонового спектра, и рассмотреть плохо освещенные детали в тени. Но тогда светлые участки сольются в одно сплошное белое пятно. Или наоборот, «сдвинуть» диапазон в сторону света, потеряв при этом всю информацию в тенях. Рассмотреть и то, и другое одновременно не получится. Динамического диапазона не хватает.

    Решением проблемы является дополнительная подсветка. Добавляя света, мы подсвечиваем тени, исключаем наиболее темные места объекта наблюдения, обрезаем тоновую диаграмму справа и, как бы, подстраиваем наше изображение под динамический диапазон камеры. Такая технология помогает как днем, так и особенно в темное время суток. Однако необходимо отметить, что к подбору источника дополнительного освещения в этом случае необходимо подойти особенно тщательно. Чем больше диапазон яркости надо компенсировать, тем более мощную, и, главное, тем более равномерную подсветку необходимо обеспечить. Равномерный, заливающий свет является ключевым условием, так как направленный мощный луч может не улучшить, а даже усугубить ситуацию, увеличивая диапазон изменения яркости, вместо того, чтобы его уменьшить. Современные высококачественные светодиодные прожекторы позволяют добиться равномерной подсветки, не превышая при этом разумных значений потребляемой энергии.

    Особенности работы

    Нет ничего сложного в работе инфракрасной лампы, которая используется для наружного видеонаблюдения. Часто камеры в ночное время без дополнительного освещения не могут сформировать четкую картину. Бюджетным вариантом является установка инфракрасного прожектора. Благодаря светочувствительному сенсору камеры данное устройство способно четко фиксировать как видимую для камеры площадь, так и имеет возможность перехвата ИК-диапазона. Таким образом, камера получает возможность показать очень четкую картину всей площади, на которой ведется видеосъемка.

    ИК-подсветка обладает рядом особенностей, о которых необходимо знать потенциальному покупателю:

    • Мощности светодиодов прожектора недостаточно для увеличения диапазона видеонаблюдения.
    • Не спешите устанавливать более мощную подсветку, так как этот вариант считается неэкономичным и в результате может привести к незапланированным растратам. Например, после установки более мощного оборудования владельцу придется приобретать блоки питания и усилить линию передачи мощности.

    Данные особенности дают возможность обычной камере, в структуру которой входят ИК-светодиоды, фиксировать изображение объектов дальностью лишь 10-20 метров. Уличная камера при таких обстоятельствах не включает в себя формирование изображений дополнительных диапазонов, а может предоставлять обзор лишь ограниченной площади. Что касается внешних источников засветки, то с таким решением дела обстоят гораздо лучше. ИК-прожектор – это огромное количество светодиодов, которые способны эффективно использовать мощность источника питания. С таким приспособлением не придется затрачивать много энергии для освещения большой площади.

    Недостатки и преимущества

    Как и любое технологическое устройство, ИК-прожектор имеет свои плюсы и минусы в применении. Вот что необходимо знать о преимуществах данного устройства:

    • незначительное энергопотребление;
    • высокая износостойкость;
    • безопасность;
    • оптимальный уровень дальности действия.

    Инфракрасное освещение также имеет и свои недостатки. Затрагивая этот вопрос, стоит сказать о том, что данный тип освещения несовместим с цветными камерами видеонаблюдения. Также работа уличной камеры непосредственно зависит от погодных условий и зачастую требует регулярной чистки стекла от различных загрязнений, вызванных внешними факторами окружающей среды.

    Стоит также подчеркнуть, что в темноте камера может быть заметна из-за того, что светодиоды имеют красный оттенок в ночное время суток. Производители инфракрасных прожекторов не раз указывали на то, что в процессе работы камер прожекторы могут нагреваться, данный показатель является вполне нормальным. Перед использованием владельцу рекомендуется настроить яркость и установить необходимый контраст.

    Другие сферы применения

    Кроме фонариков и прожекторов, инфракрасный свет используют для видеокамер при недостаточной освещённости помещений; кассы, офиса, банка, склада, кладовой. Как дежурное освещение при видеонаблюдении, где не нужно привлекать внимание к объекту. Когда свет не должен мешать людям в кинотеатрах, театрах, ночных клубах, на автостоянках и дорогах (не ослепляет водителей).

    Инфракрасный свет широко применяется в таких областях:

    • медицина (улучшает обмен веществ, выводит избыточные жиры, добавляет двигательную энергию и др.);
    • животноводство;
    • тепловизоры;
    • военная техника (система наведения, локация);
    • электронная промышленность (дистанционное управление, оптическая связь);
    • обогрев помещений;
    • пищевая промышленность (сушка овощей, фруктов);
    • астрономия;
    • метеорология (измерение температуры объектов);
    • научные исследования.

    Простой водонепроницаемый фонарик

    Простой водонепроницаемый фонарик можно сделать на основе баночки от фотопленки. Нам понадобится: новая баночка от фотопленки, светодиод 3 В, 2-3 геркона, литиевая батарейка 3 В типоразмера 2032, вата (наполнитель корпуса), колодка для батарейки от старого фонарика. Для обеспечения водонепроницаемости надо, чтобы в корпусе фонарика не было отверстий. Так что в качестве выключателя, можно использовать герметизированные контакты. Для надежного срабатывания лучше взять 2-3 геркона, так как при повороте вдоль продольной оси чувствительность геркона изменяется. Итак, собираем фонарик по схеме.

    Сгибаем провода так, чтобы все поместилось в корпусе, пустое пространство я заполнил ватой, чтобы ничего не болталось. Помещаем схему в корпус

    Важно, чтобы баночка от фотопленки была новой, т.е. чтобы крышка закрывалась максимально плотно

    В качестве выключателя подойдет любой магнит. Фонарик данной конструкции продолжал работать после 10 часового пребывания в воде. Вата осталась сухой. Так, что длительное лежание в луже такому устройству не повредит.

    ИК прожектор своими руками

    Самый простой способ сделать ИК подсветку для камеры видеонаблюдения своими руками – это вместо обычных светодиодов впаять в матрицу светодиодного прожектора ИК светодиоды — TSAL5100.

    Качественные и надежные ИК прожекторы для камер видеонаблюдения, своими руками создать довольно трудно и экономически нецелесообразно. Приобретение устройств фабричного изготовления вполне доступно как по стоимости, так и по возможностям выбора оптимальных эксплуатационных характеристик.

    Критерии выбора

    Инфракрасный прожектор IR-84-30-880

    При выборе инфракрасного прожектора для видеонаблюдения важно учитывать основные характеристики данных приборов, в зависимости от которых может различаться сфера их применения

    Перед приобретением ИК прожектора необходимо обращать внимание на следующие 4 параметра:

    1. Длина волны;
    2. Дальность возможного обнаружения объекта;
    3. Угол подсветки;
    4. Количество потребляемой энергии.

    Длина волны. От длины волны зависит то, сможет ли человек заметить действие подсветки. Человеческий глаз способен воспринимать излучение с длиной волны от 400 до 700 нм, когда как уже говорилось выше, для ИК подсветки этот показатель лежит в пределах от 730 до 900 нм. К слову говоря, при 730-880 нм еще можно заметить небольшое свечение прожектора, но после 850 нм качество изображения может ухудшаться из-за уменьшения мощности излучения и дальности обнаружения.

    Дальность. От дальности обнаружения зависит максимальное расстояние действия инфракрасной подсветки, при котором камера способна различить фигуру человека. Увеличить дальность действия подсветки можно путем уменьшения угла излучения и концентрации пучка света на отдаленном участке. Также дальность обнаружения зависит и от чувствительности сенсора самой камеры.

    ПИК-42F

    Угол подсветки. Хорошее качество изображения достигается только в том случае, когда угол излучения подсветки больше угла обзора камеры – только при этом обеспечивается равномерное освещение всего участка без слепых зон.

    Потребляемый ток. Количество потребляемой энергии инфракрасными прожекторами находится в пределах 0,4-1 А, рабочее напряжение составляет 12 В, как и у любых других слаботочных приборов.

    Чтобы правильно подобрать ИК прожектор и камеру видеонаблюдения под ваши конкретные нужды необходимо в деталях описать специалисту, в каких условиях вы планируете использовать оборудование – только в этом случае вам смогут помочь в выборе грамотной связки камера-прожектор, подходящей именно для вашей ситуации.

    Как сделать своими руками

    При желании можно самостоятельно сделать ИК-подсветку своими руками, да и всю систему видеоконтроля. Для этого надо знать основы электротехники, принцип работы электронной аппаратуры и навыки в практической работе. Самый простой способ — переделать готовый светодиодный фонарик, излучающий видимый свет, и заменить излучатель инфракрасным светодиодом или лазерным диодом. При этом помнить, что лазерный диод лучше использовать для открытых мест (при необходимости осветить дальнее расстояние), а обычный светодиод — в замкнутых пространствах. На рис. 6 показан комплект видеонаблюдения для дачи или офиса.

    Для построения системы видеоконтроля определите, какой участок нужно контролировать, где расположить видеокамеры и при необходимости внешнюю ИК-подсветку (составить примерный план). Например: видеокамеры — количество, тип. Видеорегистратор — 1 шт. Блок питания, подсветка — количество, модель. Нужный комплект подобрать в магазине. Затем смонтировать комплект на объекте.

    Не рекомендуется направлять ИК-свет в глаза — может обжечь роговицу глаза. Если освещённости не хватает, можно добавить несколько инфракрасных диодов.

    Для снижения нагрева излучателя и потребляемой мощности используется импульсное напряжение с регулируемой скважностью, то есть диоды моргают. Соотношение времени включенного и выключенного состояния светодиодов происходит на высокой частоте и незаметно для глаз. На рис. 7 показаны формы импульсного регулируемого напряжения для светодиодов.

    Рис. 7. Эпюры регулируемого напряжения от 10 % до 90 %

    В таком блоке питания применяется, как один из вариантов, схема на интегральном таймере ne555 с силовым транзистором.

    На рис. 8 изображена принципиальная схема питания импульсным напряжением для подсветки.

    Схему можно собрать на макетной плате. Её можно купить вместе с необходимыми радиодеталями в любом радиомагазине.

    Интегральная микросхема NE555 — это управляемый генератор импульсов. Для её функционирования необходимо с помощью внешних деталей установить режим работы. Показанная схема рассчитана на работу от источника +12 вольт. Элементы С1, R1, R2 задают частотный режим подсветки. С выхода 3 напряжение подаётся через ограничительный R3 на силовой ключ T1 (полевой транзистор). Он снимает нагрузку с вывода 3. По мощности подсветки выбирают тип VT1. Мощность резисторов 0,125 ватта. Переменный R1 изменяет частоту выходного импульсного напряжения. При импульсном питании диоды отдают большую световую мощность, чем при питании постоянным напряжением. Свечение диодов можно проверить камерой сотового телефона или фотоаппарата. На экране будет светлое пятно.

    Важно. При выборе надо учитывать, что ик-подсветка и ПНВ должны работать в одном частотном диапазоне.

    Важно!

    Ещё дополнение. Летом излучение диодов привлекает насекомых, которые всю ночь шарахаются толпой перед объективом. При этом регистратор, пишущий по движению, будет писать всю ночь, вхолостую забивая диск. А хитрые пауки начинают вить свои паутинки прямо на объективе, где мошек побольше. Отражение от паутины очень сильное — яркая полоса через весь экран, сбивающая чувствительность камеры в сторону понижения.

    Полюбуйтесь, до какого маразма всё может дойти:

    Да и сама мошкара забивает видимость.

    В общем, есть проблемы. По возможности подсветку уличных камер надо отдельно от камер держать.

    Время испытаний!

    После того как всё соорудил, грешно было не сделать видеозаписи результатов. Писал всё с помощью программы OBS. Хоть программа предназначена для видеотрансляций, однако вполне подходит для такого типа задач. Первые съёмки делал съёмки дома, так сказать побегал по квартире, попробовал как же это будет, удобно или нет.

    Но дома это всё фигня, каждый может в ночи поснимать на унитазную трубу, ты попробуй на улицу выйди, и чтобы тебя не забрали в дурку. И я таки сделал это!

    В этой прогулке меня больше всего удивила реакция людей. Представляете себе, некоторый чудак, в камуфляже, ходит со сливной трубой, из которой торчит куча проводов и уходит в рюкзак, с другой стороны он глядит в неё.

    Мне кажется, что я больше был похож на сумасшедшего охотника за привидениями, чем на исследователя. Но всем было абсолютно всё равно, на меня не обращали никакого внимания, будто таких индивидуумов куча ходит по улицам.

    Прогулка с камерой по парку

    Меня больше всего удивил необыкновенно белый, снежный, цвет листьев. Это было наиболее непривычно.

    То, что я видел на экране

    Короче говоря, лучше один раз увидеть, чем тысячу раз прочитать! Людей я всячески старался не снимать, чтобы не было проблем в будущем, если только они случайно не попадали в кадр. Если кто попал, то приношу свои извинения.

    Доработка ПНВ 57Е

    Не так давно снял видео про ПНВ 57е и от попищиков стали приходить вопросы про его доработку.

    ПНВ питается от бортовой сети автомобиля, танка или вертолета, на его вход подается от 12 до 30 вольт, а сам умножитель работает от 12. Выходное напряжение умножителя около 19.5кВ.

    Самодельный блок питания слева работает от 2х18650, но трансформатор быстро перегревается, а радиаторы ему не помогают. По-хорошему стоит мотать свой трансформатор, но заниматься этим лень и некогда. Сегодня же пойдет речь про правый, родной блок питания и его доработку.

    Открутив все болты и аккуратно вынув питающий кабель достаем плату питания. На дне корпуса прилагается схема устройства. Схема так же есть в ТО на прибор.

    Полярности проводов я подписал на плате, чтоб наверняка не забыть.

    Красными кругами выделены места, куда нужно припаять постоянку на 9-12В, родной блок подстройки напряжения (левая часть на схеме и на фото) можно как полностью отрезать куском платы, так и просто выпаять, как это сделал я.

    Выделены эти же места на самой плате, на той стороне, что ближе к умножителю. Разбирать умножитель нужно аккуратно, чтоб не повредить пружинку и уплотнитель.

    Запитываю блок от кроны, ответный контакт для кроны взят из старой кроны, вдруг кто не знал, что так можно =) Из-за питания от кроны как раз и не стал отпиливать плату, она к ней удобно лепится на двойной скотч и не болтается по корпусу.

    Теперь о креплении.

    Я же пошел по самому дешевому варианту: шлем у меня пластиковый, без баллистической защиты, потому на него была приклепана стальная пластинка и свернута в трубочку.

    Вместо дорогих креплений взята арматура, изогнута так, чтобы идеально подходила под меня. К ней приварены 2 шайбы и на эти шайбы, через стандартные отверстия болтом М6 крепится ПНВ.

    Сам блок питания крепится на 2 самоклеющиеся велкро-полоски, нашел такие в автомобильном отделе строймага. Их вполне хватает, чтобы блок не отвалился при легком беге.

    Инфракрасный фонарь с длиной волны 850нм прикрепил на боковую рельсу шлема в обычное дюймовое кольцо для оптики. У меня 3 ваттный диод, но этого оказалось очень мало, в видео почти все кадры сняты с этим фонариком и далеко он не бьет, стоящую не контрастную мишень на 100м я уже не видел.

    Как уже и говорил в видео, сам прибор интересный, как дешевая игрушка (можно найти от 5тр) вполне заходит. Я с ним провозился во время карантинов и был доволен получившимся творением. Теперь шлем со свинцовыми пластинами оброс советским ПНВ =)

    Что понадобится

    Сделать прибор ночного видения в домашних условиях несложно и на это уйдет всего пару часов. Для создания устройства первым делом необходимо подготовить все материалы и инструменты, которые понадобятся в дальнейшем. Из материалов понадобится:

    • аккумулятор на 12В (можно взять батарейки по 4В и соединить их последовательно друг с другом);
    • 5 инфракрасных светодиодов (берутся из ненужных пультов от телевизора, DVD, музыкального центра и так далее);
    • несколько резисторов на 270 Ом;
    • проводки для соединения;
    • компактный выключатель;
    • изолента;
    • термоклей;
    • небольшая картонная коробка.

    Для придания будущему ПНВ эстетичного вида также может понадобиться черная краска. Для сборки нужно подготовить и такие инструменты:

    • канцелярский нож;
    • клеевой пистолет;
    • кусачки;
    • плоскогубцы;
    • паяльник.

    Дополнительно следует подготовить карандаш, кисточку и линейку.

    Вариант 2 устройство на свечной копоти

    Его следует сделать тем людям, которые не могут найти в своем доме графит или не хотят возиться с ним. Последовательность создания ИК-обогревателя своими руками такова:

    1. Берут два куска стекла. Размеры каждого куска должны быть одинаковыми. Эти параметры могут быть такими: длина 5-7 см, ширина — 2-3 см.
    2. Материал очищают от любой грязи. Если нужно, его моют и затем сушат. Также его нужно обезжирить и охладить. Снизить температуру стекла можно, поставив его в холодильник.
    3. Наносят на стекло токопроводящий слой. Для этого зажигают парафиновую свечу и размещают над ней стекло так, чтобы оно покрылось плотным слоем копоти. Желательно, чтобы этот слой был тонким. Копоть и будет токопроводящим материалом, который содержит в себе несгоревшие частицы углерода.
    4. Берут ветошь и стирают ею несколько миллиметров копоти со всех сторон прямоугольника.
    5. На стороны стекла длиной, равной 3 см, ставят куски медной или алюминиевой фольги. Один конец материала должен находиться на копоти, другой — выступать за край стекла на несколько сантиметров. Куски фольги будут клеммами, к которым будут подключаться концы кабеля.
    6. Сверху закопченного стекла с кусками фольги ставят другое стекло. Перед установкой его обрабатывают паром.
    7. Каждый торец конструкции запаивают эпоксидной смолой или покрывают слоем герметика.
    8. Измеряют сопротивление нагревательного элемента будущего ик обогревателя и подсчитывают его мощность. Она является произведением сопротивления и квадрата силы тока. Формула такова: N = R x I², где R и I являются сопротивлением и силой тока, соответственно .
    9. Если мощность не превышает допустимых норм (например, для квартир со старой проводкой она не должна превышать 3 кВт), то приступают к установке на деревянную основу. Если мощность не устраивает, то конструкцию разбирают и перерабатывают. Аналогичные действия нужно сделать и во время возможного ремонта. Чтобы изменить сопротивление, нужно изменить ширину полосы копоти. Чем она больше, тем меньше сопротивление. Нагрев также уменьшается.
    10. В доске длиной, которая превышает длину сделанного нагревательного элемента, надо сделать паз. Его ширина должна быть равной ширине стеклянной конструкции. Глубина — 0,5 см.
    11. Осуществляют монтаж нагревательного элемента на основание. Для этого его вставляют в паз.
    12. К клеммам подсоединяют провод с регулятором напряжения и вилкой.

    Число таких нагревательных элементов может быть большим. Их можно соединять как последовательно, так и параллельно. Способ зависит от человека, который также может сделать ремонт своего прибора.

    Обогреватель на основе слоистого пластика

    Для сборки самодельного инфракрасного камина понадобятся:

    • Слоистый бумажный пластик – 2 штуки площадью по 1 квадратному метру;
    • Боксидка;
    • Графит (можно купить порошок или достать из старых батареек, из карандаша – но придется истолочь его);
    • Медные пластинки;
    • Древесина;
    • Штепсель со шнуром.

    Если все есть, приступайте к сборке:

    1. Смешайте графитовый порошок с боксидкой, чтобы получилась густая масса, обладающая высоким сопротивлением;
    2. Положите пластиковый лист шероховатой поверхностью к столу;
    3. Нанесите на пластик боксидку, смешанную с графитом, мазками в форме зигзага;
    4. Точно также подготовьте второй лист пластика;
    5. Склейте оба пластиковых листа, плотно прижимая их друг к другу;
    6. На противоположных сторонах пластин укрепите медные пластинки, которые будут играть роль клемм;
    7. Соорудите рамку из дерева, в которую нужно будет вставить полученную конструкцию;
    8. Позвольте будущему обогревателю высохнуть;
    9. Замерьте сопротивление проводника и посчитайте мощность.

    Внимание! Здесь расчет мощности и сопротивления производится тем же методом, что и в предыдущем случае. Только сопротивление будет зависеть не от ширины токопроводящего слоя, а от содержания графита в боксидке. Чем порошка больше – тем выше сопротивление, и наоборот.

    Придется несколько раз разобрать и снова собрать конструкция до того, как опытным путем вы добьетесь нужной мощности. Только после этого можно соединить устройство со штепселем и подключить его в сеть для эксплуатации.

    Пошаговая сборка

    Стекло, которое вы будете использовать, должно иметь абсолютно чистую поверхность. Никакой пыли, грязи, краски или жирных пятен на его поверхности быть не должно. Для того чтобы обогреватель работал, придется сформировать поверхность, способную проводить ток. Для этого нужна свеча. (См. также: Строим печь своими руками)

    Зажигаете свечу и начинаете медленно добиваться того, чтобы поверхность стала покрываться слоем копоти. Делать это нужно только с одной стороны. Со второй стеклянной заготовкой поступаете аналогичным образом.

    Далее, отступаете от каждого края стекла примерно 50 мм (пол сантиметра) и удаляете сажу ватной палочкой. Из фольги вырезаете полоски, размер которых соответствует размеру созданной токопроводящей поверхности (черному квадрату). Фольга играет роль электродов. На поверхность стекла, с той стороны, где находится копоть, наносите клей. На клей крепите кусочек фольги, но так чтобы часть его выходила за пределы стекла.

    Сверху накладывается второе стекло. Стыки между стеклами следует аккуратно промазать герметиком. Самодельный электрический обогреватель практически готов. (См. также: Как сделать изразцы для печи своими руками)

    Теперь самоделку обязательно нужно протестировать, измерить мощность тока. Для этого используют формулу: P = I2R, где

    Р – мощность тока

    I – сила тока в амперах

    R – сопротивление в Ом

    Если полученная мощность попадет в пределы допустимых норм, которые указаны в специализированной литературе, то устройство можно подключать к сети. Если нет, то лучше попробовать собрать его заново. При этом учитывайте то, что сопротивление напрямую зависит от слоя копоти на стеклах. То есть, чем больше слой копоти, тем меньше сопротивление и тем больше будут нагреваться стекла.

    Итак, если все данные соответствуют норме можно подключать устройство к сети. Оставленные на свободе концы фольги заворачивают за края нижнего стекла и фиксируются клеем. Теперь устройство можно проверить на работоспособность. Для этого его включают в сеть, и ждут, пока он наберет максимальную для него температуру. Она составляет примерно 40 градусов. (См. также: Тигельная печь своими руками)

    По такой схеме сделать самодельный обогреватель на 12 вольт сможет даже школьник. Но все же для завершающего этапа такое устройство лучше снабдить специальными приспособлениями для контроля.

    Классификация светильников

    Светодиодные фонари с сенсорными устройствами принято подразделять по ряду признаков.

    По сфере использования:

    1. Промышленные светильники. Используются для освещения индустриальных, складских, общественных и крупных жилых объектов. Применяются в местах большого скопления людей.
    2. Декоративные фонари. Актуальны для небольших территорий. В свою очередь, декоративные светильники делят на наземные (парки, аллеи, участки возле здания), ландшафтные (клумбы, дорожки, ландшафт), газонные (используются для декоративной подсветки).

    По разновидности источника электроэнергии:

    1. Автономные светильники. Работают на батарейках пальчикового типа. Достоинство таких фонарей состоит в возможности их установки вне зависимости от стационарных источников электроэнергии. Однако батарейки не отличаются долгим сроком службы и маломощны.
    2. Фонари, работающие от сети. Место установки таких светильников определяется наличием электропроводки и розеток.
    3. Устройства, питающиеся от солнечных батарей.

    По способу установки:

    • настенные;
    • потолочные;
    • встраиваемые;
    • подвесные;
    • устанавливаемые на вертикальные опоры;
    • консольные;
    • грунтовые.

    По типу датчиков:

    1. Датчики движения. Откликаются на движущиеся объекты.
    2. Датчики присутствия. Реагируют на колебания в зоне охвата прибора.
    3. Датчик уровня освещенности.

    По технологии реагирования:

    1. Инфракрасные датчики. Отзываются на изменение уровня теплового излучения.
    2. Ультразвуковые датчики, улавливающие волны в УЗ-диапазоне.
    3. Микроволновые устройства.
    4. Комбинированные датчики (содержат два или несколько элементов разных типов).

    Наибольшей эффективностью отличаются инфракрасные и комбинированные устройства.

    Последовательное подключение лампочек

    Очень просто. Просто подключите последовательно две лампочки одинаковой мощности, и напряжение на каждой из них уменьшится вдвое.

    Конечно, они будут светиться менее ярко.

    Как изменится энергопотребление такого луча источников света? Измерения можно проводить мультиметром.

    Предположим, например, при постоянном напряжении 240 В для двух лампочек мощностью 100 Вт сила тока составляет 290 мА.

    Исходя из формулы для расчета мощности, получаем:

    P = I * U = 0,29 A * 240 В = 69,6 Вт

    Как видите, потребление уменьшилось. Но при этом увеличивалось тепловыделение на ватт мощности.

    Какими бывают

    Как выглядит инфракрасный светодиод и можно ли его отличить от обычного? Вопрос довольно сложный, поскольку инфракрасные полупроводники имеют огромное количество форм-факторов – все зависит от их характеристик и назначения.

    В компьютерных мышках и в пультах ДУ, к примеру, стоят обычные трехмиллиметровые приборы, в CD-приводах и лазерных принтерах – сверхминиатюрные в SMD или металлостеклянном корпусе. В ИК-прожекторах могут стоять как множество маломощных, так и несколько мощных инфракрасных светодиодов: обычных, диаметром до 10 мм или в SMD корпусе.

    Цвет баллона тоже может быть различным – от прозрачного и металлического с прозрачным окном до матово-черного. Конечно, эти приборы можно отличить от светоизлучающих с красным и желтым баллонами – инфракрасные светодиоды не имеют таких цветов, но и только.

    Что касается технических характеристик инфракрасных светодиодов, то основные из них следующие:

    1. Угол рассеивания. Чем этот параметр выше, тем меньше освещенности приходится на определенную поверхность объекта, но тем большую площадь он покрывает ИК-излучением. Измеряется в градусах телесного угла – стерадианах (Ω).
    2. Выходная мощность. Измеряется в ваттах (Вт) или милливаттах (мВт) и может колебаться от десятков милливатт до нескольких ватт.
    3. Рабочий ток. Ток, при котором гарантируются заявленные характеристики, включая наработку на отказ и выходную мощность излучения. Измеряется в амперах (миллиамперах).
    4. Прямое падение напряжения. Напряжение, которое падает на кристалле при номинальном токе. Зависит от материала кристалла и обычно не превышает 2 вольт.
    5. Обратное максимально допустимое напряжение. Напряжение обратной полярности, которое выдерживает кристалл без электрического повреждения. Для инфракрасных приборов обычно не превышает 1 вольта.
    6. Излучаемая длина волны. Если светодиод лазерный, то указывается одна длина волны, и это понятно. Если же это обычный инфракрасный светодиод, то нередко указывается диапазон излучаемых им волн, которые измеряются в нанометрах или микрометрах (нм или мкм).

    Есть ли вред для здоровья?

    Поскольку излучение с длиной волны меньше видимого спектра опасно для человека (относится к проникающему), можно предположить, что и волны, лежащие ниже видимого спектра, тоже опасны. Это совершенно неверно. Коротковолновое излучение, начиная с ультрафиолета и выше, опасно тем, что оно не только проникает глубоко в ткани, обжигая их, но и обладает ионизирующим свойством, разрушающим клетки организма.

    Длинноволновое же не имеет таких свойств. Под ним даже «обгореть» нельзя, как под тем же ультрафиолетом. Оно не влияет на кожу и глаза, не проникает в ткани и совершенно безвредно. Таким образом, пользоваться инфракрасным прожектором абсолютно безопасно.

    Общие рекомендации

    Инфракрасный выключатель после покупки нужно отрегулировать. Для этого требуется сделать следующее:

    • отрегулировать чувствительность сенсора;
    • установить время работы во включенном состоянии;
    • если прибор оснащен микрофоном, его также следует отрегулировать.

    Многие выключатели оснащаются светодиодным индикатором, который меняет частоту мигания при срабатывании. Это свойство можно использовать при настройке датчика.

    Инфракрасный выключатель – это устройство, призванное облегчить и сделать более комфортной жизнь пользователя. Прибор оснащен ИК датчиком, который реагирует на тепло человека. Когда в радиусе видимости сенсора начинается действие, включается светильник. Также выключатель может работать от пульта дистанционного управления.

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: tritovarischa@cp9.ru